Soutenance de thèse d'Ardalan Tootchifatidehi

Title: Development of a global wetland map and application to describe hillslope hydrology in the ORCHIDEE land surface model

Les membres du jury sont :
M. Filipe AIRES, Directeur de recherche CNRS, LERMA UMR 8111, Paris, rapporteur
M. Gérard KRINNER, Directeur de recherche CNRS, Institut des géosciences de l'environnement, IGE UMR 5001, Grenoble, rapporteur
M. Basile HECTOR, Chargé de recherche IRD, Institut des géosciences de l'environnement, IGE UMR 5001, Grenoble, examinateur
Mme Catherine OTTLé, Directrice de recherche CNRS, LSCE UMR 8212, Gif-sur-Yvette, examinatrice
M. Pierre RIBSTEIN, Professeur des universités, SU, METIS UMR7619, examinateur
Mme Agnès DUCHARNE, Directrice de recherche CNRS, METIS UMR 7619, directrice de thèse
Mme Anne JOST, Maître de conférences, SU, METIS UMR 7619, encadrante de thèse

 

Abstract: Wetlands have significant functions in the Earth’s climate system both at local scales through their buffering effect on floods and water purification (denitrification) and also at a larger scale with their feedbacks to the atmosphere and its role in methane emission. To include wetlands in climate models globally, both their geographic distribution and hydrology should be known. There is a massive inconsistency among wetland mapping methods and wetland extent estimates (from 3 to 21% of the land surface area), rooted in imagery disturbances, underestimation of the groundwater driven wetlands in inventories or imprecise representation of flooded zones in GW modellings. In the framework of this PhD project, first by developing a global wetland map through a multi-source data fusion method we provide a simple applied
classification for wetlands hydrological roles. Wetlands’ global extent is estimated to be almost 24.3 106 km2 (including lakes). The core distinction between classes is the flooding conditions and the water source, either coming from surface streams or groundwater convergence. In the next step, we modelled the wetlands’ role on surface processes in ORCHIDEE land surface model which was the testing platform for this new hydrologic scheme at large scale. The basic assumption in the new version (ORCHIDEE-GW) in this sub-grid procedures is that the deep drainage from the uplands converges over lowland wet fraction in parallel to infiltration from precipitation. Simulations over the contemporary era under climate forcing shows that the water table goes deeper with increased potential wetland fraction. The water table is shallow enough to be considered actual wetland when the potential wetland fraction is less than 0.2 over the Seine River Basin. The evapotranspiration rate increases by almost 3% with ORCHIDEE-GW because of the increased soil moisture in the wetland soil column. Increased soil moisture in the wet fraction affects the soil surface temperature as well. The future applications of this PhD work can be to explicitly introduce the biogeochemical procedures in wetlands in a dynamic manner to study the feedback effects of wetlands on climate and the Carbon cycle.

Keywords: wetland, land surface model, ORCHIDEE

Résumé : Les zones humides jouent un rôle important dans le fonctionnement du système Terre aussi bien à l’échelle locale via un effet tampon sur les crues et épurateur de l’eau (dénitrification) que régionalement, du fait de leurs interactions avec l’atmosphère et de leur contribution majeure aux émissions de méthane. Leur représentation dans les modèles climatiques planétaires requiert une connaissance approfondie à la fois de leur distribution géographique et de leur hydrologie. Il y a un vaste désaccord sur l’estimation de l’étendue globale des zones humides, comprise entre 3% et 21% de la surface terrestre continentale, selon les méthodes employées. Ces contradictions s’expliquent par une représentation incomplète par les modèles hydrogéologiques des zones régulièrement inondées identifiées par l’imagerie satellitaire, qui peine en revanche à détecter les zones humides alimentées par les eaux souterraines. Peu visibles, elles sont également sous-estimées par la plupart des inventaires. La première étape de la thèse s’est donc focalisée sur la construction d’une carte mondiale des zones humides visant à concilier ces différences, par la distinction de ces deux types de zones humides, obtenus par  combinaison des méthodes d’imagerie des eaux de surface et de modélisation des eaux souterraines. La proportion de zones humides à la surface du globe (21%) se situe dans la fourchette haute des estimations précédentes et concorde avec de nombreuses études régionales récentes, notamment en France et aux Etats-Unis. Dans une seconde étape, cette carte a servi d’entrée à une nouvelle version du modèle ORCHIDEE, qui décrit les surfaces continentales dans le modèle de climat de l’IPSL. La carte permet de distinguer dans chaque maille du modèle une fraction humide qui correspond aux fonds de vallée et reçoit les écoulements de la fraction haute, ce qui y rend possible le développement d’une nappe proche de la surface dont la profondeur répond au climat. Cette nouvelle version, dite ORCHIDEE-GW, a été testée dans le bassin de la Seine par comparaison à des observations de débit, d’évapotranspiration et de profondeur de nappe et afin de mieux comprendre l’effet des paramètres mal contraints tels que la profondeur du sol ou la formulation du flux nappe-rivière. Les effets principaux sont une augmentation de l’évaporation, une baisse des débits et un effet refroidissant, dont les conséquences sur le climat présent mais aussi futur sont une perspective importante à ce travail.

Mots-clefs : zones humides, modèle de surface, ORCHIDEE

 

Lundi, 1 juillet, 2019 - 14:00
Amphithéâtre 45 A - site Jussieu Pierre et Marie Curie