The renewal of existent railways requires the characterisation of the mechanical properties of railway platforms (RP), thus raising the need to select appropriate maintenance actions. Conventional techniques (geotechnical soundings, coring) remain local, destructive, expensive and with low yields. Using non-destructive investigation techniques for local diagnosis and monitoring thus appears of great interest for enhancing RP control. Seismic surface-wave methods have been proposed to estimate in situ mechanical parameters of the superficial layers below railways. In this context, a joint geotechnical and seismic survey was carried out along the Northern Europe high-speed line (LGV) in order to precisely determine the origins of a phenomenon affecting the geometry of the track. Strong a priori knowledge of the RP structure allowed for inverting dispersion measurements for 1D VS models along the track.
The results showed a contrast of VS in the loess lying below the RP, between areas where the phenomenon was observed and those it was not. This contrast was confirmed by Bender Elements measurements of VS performed on core drilling samples, and corresponded to the lateral variations observed along the track. These results encourage considering dispersion measurements as an appropriate tool of RP monitoring.