Assimilation of streamflow data for constraining meteorological reanalyses in mountain environment

Nicolas Le Moine (Univ. P. & M. Curie) Frédéric Hendrickx (EDF R&D) Joël Gailhard (EDF DTG)

July 23, 2013

Joint Assembly IAHS - IAPSO - I Gothenburg Sweden 22-26 July

- Headwater mountain catchments are the 'water towers' of many populations around the globe
- It is crucial to have a good quantitative knowledge of this resource both in present and future climate
- However, hydro-meteorological measurement networks are usually scarce in these regions

- 0

 14600 km^2

14600 km² 139 rain gauges

14600 km² 139 rain gauges 89 stream gauges $\,$ $\,$ Hydrometeorological resolution: $\sim 100~km^2$

• Typical size of elementary subcatchments in topographically-based (semi-distributed) hydrological models

- Issues:
 - Subgrid heterogeneity
 - Lack of data at high elevations

Insufficient sampling at high elevations

Insufficient sampling at high elevations

Hydrometeorological resolution: $\sim 100 \ \text{km}^2$

 Typical size of elementary subcatchments in topographically-based (semi-distributed) hydrological models

- Issues:
 - Subgrid heterogeneity \Rightarrow INTERPOLATION in (x, y)

• Lack of data at high elevations \Rightarrow EXTRAPOLATION in z

Two-step approach / Step 1 : meteorological reanalysis

Two-step approach / Step 1 : meteorological reanalysis

Two-step approach / Step 2 : hydrological modeling

Two-step approach / Step 2 : hydrological modeling

• Each day is attributed to one of **8 weather types**, according to its pattern of geopotential height at 1000 hPa at the synoptic scale (*Paquet* et al., 2006 ; *Garavaglia* et al., 2010)

• On each day, the rainfall field is modelled as the product of a **template** and a **scaling factor**

$$p(\mathbf{x},j) = \lambda(\mathbf{x},j) \cdot p^*_{wp(j)}(\mathbf{x})$$

• On each day, the rainfall field is modelled as the product of a **template** and a **scaling factor**

• The template is itself the product of a deterministic **drift** and a **residual**

$$\overline{P}_k(\mathbf{x}) = \frac{1}{n_k} \cdot \sum_{j/\operatorname{wp}(j)=k} P(\mathbf{x},j) = R_k(\mathbf{x}) \cdot \exp\left(\frac{z(\mathbf{x})}{H_k}\right)$$

- Daily circulation pattern was
 "East Return" (wp(j) = 6)
- First step: build precipitation template

$$p_6^*(\mathbf{x}) = p_6^0 \exp\left(\frac{z(\mathbf{x})}{H_6}\right) \cdot r_6(\mathbf{x})$$

• We compute the mean rainfall amount for all days of pattern 6 at each rain gauge:

$$p_6^*(\mathbf{x_k}) = \frac{1}{N_6} \sum_{j/wp(j)=6} p(\mathbf{x_k}, j)$$

• The classical way to estimate the drift and the residuals would be through iterative GLS (to account for spatial correlation) on the

$$\left\{ z(\mathbf{x}_{\mathbf{k}}) ; \ln p_6^*(\mathbf{x}_{\mathbf{k}}) \right\}$$

• The model is multiplicative i.e. additive in log space

• We assume log-normal distribution for $r_{wp(j)}(\mathbf{x})$ and $\lambda(\mathbf{x}, j | \lambda > 0)$

• We use Gibbs sampling to generate Gaussian samples where the daily scaling factor is zero (Gaussian anamorphosis)

Geostatistical model for daily temperature estimation

• We proceed in a similar way for temperature, except that we use an additive model

$$t(\mathbf{x},j) = \delta(\mathbf{x},j) + t_{wp(j)}^*(\mathbf{x})$$

$$t(\mathbf{x},j) = \delta(\mathbf{x},j) + [t_{wp(j)}^0 - c_{wp(j)} \cdot z(\mathbf{x})] + \varepsilon_{wp(j)}(\mathbf{x})$$

• The key step is the identification of the drift parameters H_1, \ldots, H_8 (scale height for precipitation increase with z) and c_1, \ldots, c_8 (lapse rate for temperature decrease with z)

- The key step is the identification of the drift parameters H_1, \ldots, H_8 (scale height for precipitation increase with z) and c_1, \ldots, c_8 (lapse rate for temperature decrease with z)
- We compare the two-step and one-step methods with a semi-distributed hydrological model (overhauled version of the CEQUEAU model by Charbonneau *et al.*, 1977)

- The key step is the identification of the drift parameters H_1, \ldots, H_8 (scale height for precipitation increase with z) and c_1, \ldots, c_8 (lapse rate for temperature decrease with z)
- We compare the two-step and one-step methods with a semi-distributed hydrological model (overhauled version of the CEQUEAU model by Charbonneau *et al.*, 1977)
 - [GLS] Identification of the 16 drift parameters using Generalized Least Squares, then MO calibration of the hydrological model (19 parameters) against discharge and snow measurements

- The key step is the identification of the drift parameters H_1, \ldots, H_8 (scale height for precipitation increase with z) and c_1, \ldots, c_8 (lapse rate for temperature decrease with z)
- We compare the two-step and one-step methods with a semi-distributed hydrological model (overhauled version of the CEQUEAU model by Charbonneau *et al.*, 1977)
 - [GLS] Identification of the 16 drift parameters using Generalized Least Squares, then MO calibration of the hydrological model (19 parameters) against discharge and snow measurements[JK] Identification of the 16 drift parameters using Jack-Knife, then
 - MO calibration of the hydrological model

- The key step is the identification of the drift parameters H_1, \ldots, H_8 (scale height for precipitation increase with z) and c_1, \ldots, c_8 (lapse rate for temperature decrease with z)
- We compare the two-step and one-step methods with a semi-distributed hydrological model (overhauled version of the CEQUEAU model by Charbonneau *et al.*, 1977)
 - [GLS] Identification of the 16 drift parameters using Generalized Least Squares, then MO calibration of the hydrological model (19 parameters) against discharge and snow measurements
 - [JK] Identification of the 16 drift parameters using Jack-Knife, then MO calibration of the hydrological model
 - [2in1] Identification of the 16 + 19 = 35 parameters using MO calibration against discharge and snow measurements

- The key step is the identification of the drift parameters H_1, \ldots, H_8 (scale height for precipitation increase with z) and c_1, \ldots, c_8 (lapse rate for temperature decrease with z)
- We compare the two-step and one-step methods with a semi-distributed hydrological model (overhauled version of the CEQUEAU model by Charbonneau *et al.*, 1977)
 - [GLS] Identification of the 16 drift parameters using Generalized Least Squares, then MO calibration of the hydrological model (19 parameters) against discharge and snow measurements
 - [JK] Identification of the 16 drift parameters using Jack-Knife, then MO calibration of the hydrological model
 - [2in1] Identification of the 16 + 19 = 35 parameters using MO calibration against discharge and snow measurements
- For each solution we perform a symmetric split sample test on the periods 1983–1993 and 1994–2004

GLS vs. jack-knife in the two-step method

Drift estimates for WP 5 (parameter H_5)

Results in calibration

Results in control

Results in control: focus on point-scale SWE measurements

NRC @ Prapic (2492 m), control 1994–2004

- Streamflow and SWE measurements greatly help assess orographic gradients of temperature and precipitation at the meso-scale
- This study confirms the importance (and difficulty) of building unbiased forcing fields for meso-scale hydrological modeling
- Current work: include other variables such as snow cover extent (MODIS images), glacier extent (e.g., GLIMS survey)
- Perspectives: couple the methodology with statistical downscaling approaches in climate change impact studies (e.g. analogs, etc.)

Thank you for your attention

nicolas.le_moine@upmc.fr

• Single-layer snowpack model with 4 state variables:

W	Snowpack water equivalent	$kg \cdot m^{-2}$
U	Snowpack heat content	${ m J} \cdot { m m}^{-2}$
$ ho_{ m snow}$	Snowpack bulk density	${ m kg} \cdot { m m}^{-3}$
t _{snow}	Age of snow surface	S

■ Each topographical mesh element is discretized into elevation bands
 ⇒ one instance of the snow routine is run on each band

We solve a simplified, linearized and parameterized form of surface energy balance in order to estimate (pseudo) surface temperature $T_{\text{snow,s}}$ and entering conducto-convective heat flux $Q_{\text{cc,snow}}$

$$\begin{aligned} R_{\mathrm{sw}\downarrow} - R_{\mathrm{sw}\uparrow} &+ R_{\mathrm{lw}\downarrow} &- R_{\mathrm{lw}\uparrow} &= Q_{\mathrm{cc,snow}} + \mathcal{H}^{\mathrm{reg.}} + \mathcal{L}^{\mathrm{reg.}} \\ \overline{f} R_{e} - \alpha_{\mathrm{snow}}\overline{f} R_{e} &+ \sigma \overline{\epsilon}_{\mathrm{air}} T_{0}^{4} \left(1 + 4 \frac{T_{\mathrm{air}} - T_{0}}{T_{0}}\right) - \sigma \epsilon_{\mathrm{snow,s}} T_{0}^{4} \left(1 + 4 \frac{T_{\mathrm{snow,s}} - T_{0}}{T_{0}}\right) &= k_{\mathrm{snow}} \left(\frac{T_{\mathrm{snow,s}} - T_{\mathrm{snow}}}{2 z_{\mathrm{snow}}}\right) \end{aligned}$$

with

$$\begin{cases} \alpha_{\rm snow} = (\alpha_{\rm max} - \alpha_{\rm min})e^{-\frac{t_{\rm snow}}{\tau_{\alpha}}} + \alpha_{\rm min} \\ \\ k_{\rm snow} = k_{\rm ice} \left(\frac{\rho_{\rm snow}}{\rho_{\rm ice}}\right)^2 \end{cases}$$

Age-dependent albedo

Density-dependent thermal conductivity

nord

- We want to be able to simulate snowpack density in order to validate against snow depth measurements (more commonly available than snow water equivalent measurements)
- Self-loading densification using simplified [*Pitman*, 1991] relationship without temperature dependency:

$$\frac{d\rho_{\rm snow}}{dt} = \frac{\rho_{\rm snow}gW}{2\eta_0} \ e^{-\frac{\rho_{\rm snow}}{\rho_0}}$$

Summary of model parameters

Symbol	Parameter	Unit	Calibration
$lpha_{\sf max}$	Maximum albedo (new snow)	_	
$lpha_{min}$	Minimum albedo (old snow)	—	
$ au_{lpha}$	Characteristic time for albedo decrease	s	
Ŧ	Time-averaged ratio $R_{ m sw\downarrow}/R_e$	—	•
k _{ice}	Effective thermal conductivity of ice	$W\cdot m^{-1}\cdot K^{-1}$	
$\bar{\epsilon}_{\rm air}$	Time-averaged emissivity of the atmosphere	—	•
$\epsilon_{\text{snow,s}}$	Emissivity of snow surface	—	
$\theta_{\rm ret}$	Maximum retention of liquid water in snowpack	${ m kg\cdot kg^{-1}}$	
ρ0	Density of new snow	${ m kg}\cdot{ m m}^{-3}$	•
η_0	Compressive viscosity of new snow	Pa · s	•