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1. Research question

● A template field for WP k, i.e. the mean daily rainfall 
amount at location x in WP k is defined by:

● Multiplicative residual Rk(x) is assumed to be log-normally 
distributed and is obtained by log-normal ordinary kriging.

● The rainfall field for day j, belonging to weather pattern 
wp(j), is obtained by deformation of the template:

● Multiplicative residual Λ(x,j) is obtained through 
Gaussian anamorphosis, simple kriging in the Gaussian 
space, and reverse anamorphosis (Le Moine et al., 2013).

3. Joint calibration of geostatistical & hydrological models

2. Geostatistical model for rainfall estimation

4. Key results

● We use a geostatistical approach based on a weather pattern (WP) 
classification in order to estimate daily rainfall and temperature fields 
from a set of conditioning gages. This classification consists in 8 WPs 
defined according to the pattern of geopotential height at 1000 hPa at the 
synoptic scale (Paquet et al., 2006).

● The geostatistical model aims at reproducing the variability in the 2D 
geographic plane as well as the orographic effects in the z-dimension.

● For each weather pattern k, we define a scale height Hk accounting for 
the increase of precipitation with elevation and a lapse rate ck for the 
decrease of temperature (here we present only the model for rainfall).
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● Closing the water balance in mountain areas is difficult due to 
the scarcity and lack of spatial representativeness of point-
scale rainfall measurements (typically 1 gage for each 100 km2).

● No rainfall measurements available above ~2000 m, which 
means typically no information in the upper 50% of a meso-scale 
catchment in the Alps. Nonetheless we need areal rainfall 
estimates in order to force hydrological models.

● We investigate this issue on the Durance River catchment in 
the Southern Alps of France (3600 km2 at Espinasses).
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● The main weakness in the geostatistical model is the lack of points-scale data at high 
elevations in order to constrain the estimation of the drift parameters (rainfall scale 
heights Hk and temperature lapse rates ck).

● On the other side, a catchment can be seen as a huge rain gage: streamflow at the 
outlet is correlated with areal rainfall. Ensuring water balance closure at the catchment 
scale is thus a strong block constraint on the estimated rainfall fields (the rationale 
behind Top-Kriging, see e.g. Gottschalk, 1993).

● Paradox: In order to solve the inverse problem (rainfall from streamflow, using block-
constrained geostatistics) we need to invert the model for the direct problem...
     
                  ... but this is the actual hydrological model
                       we wanted to identify in the first place!

● A solution is to calibrate the geostatistical 
model (drift parameters) and the hydrological 
model jointly in order to find the parameter 
sets that best satisfy all constraints (both point-
scale and block). We use a multi-objective 
calibration against all available measurements 
(streamflow, validation rain gages,
and SWE measurements).
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Hydro-meteorological parameters

θgeostat
(16 parameters)

Set of conditioning 
observations

Set of auxiliary predictors 
(e.g. topography, coarse-grid

climate model...)

θhydro
(19 parameters)

● We use different metrics to evaluate model outputs:
   
   CP     : 
   
   CQ     : 
   CSWE : 

● We compare 2 calibration approaches for the 16+19 parameters:

[2-step]

[1-step]

● Because hydrological criteria CQ and CSWE are much more responsive 
to changes in the drift parameters than CP, the 1-step approach 
greatly improves robustness in the identification of θgeostat.

Mean Kling-Gupta efficiency (KGE, Gupta et al., 2009)
in jack-knife (leave-one-out) validation for the 26 rain gages
Mean KGE on daily flows at the 7 streamflow gages
Mean KGE on daily measurements at the 7 SWE stations

First, mono-objective calibration of the 16 drift parameters 
θgeostat by maximizing CP ; Then bi-objective calibration of 
the 19 hydrological parameters θhydro using { CQ ; CSWE }

Joint, tri-objective calibration of all 35 parameters using 
{ CP ; CQ ; CSWE }
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