IGEM March 18-20, 2019 <u>Taipei, T</u>aiwan

On the use of a physicallybased baseflow time constant in ORCHIDEE land surface model

Anne Jost, Ana Schneider, Ludovic Oudin & Agnès Ducharne

This work was supported by the I-GEM ANR.

Motivation

Response time of groundwater to fluctuations in recharge

Climate point of view → buffer effect on soil moisture, evapotranspiration and precipitation

Hydrology point of view \rightarrow buffer effect on streamflow groundwater buffer effect on streamflow and climate

groundwater response to climate variability

BUFFERING EFFECTS OF GROUNDWATER (adapted from Entekhabi et al. 1996 & Lo

Motivation

Baseflow modelling in land surface models

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\alpha Q^b \longrightarrow Q = Q_0 \mathrm{e}^{-t/\tau}$$
$$b = 1$$

τ characteristic baseflow timescale

calibration against discharge data
recession flow analysis
physically-based constant

 $D = \overline{h}K/S_y$ hydraulic diffusivity (m².s⁻¹)

Research question

Can a physically-based baseflow time constant improve river discharge simulations in large scale land surface models?

Outline

- 1. ESTIMATION OF A PHYSICALLY-BASED BASEFLOW TIME CONSTANT
- 2. SIMULATING RIVER DISCHARGE WITH ORCHIDEE LAND SURFACE MODEL
- 3. DISCUSSION ON THE USE OF A PHYSICALLY-BASED BASEFLOW TIME CONSTANT IN LAND SURFACE HYDROLOGY MODELLING

2nd international workshop on the Impact of Groundwater in Earth system Models

ESTIMATION OF A PHYSICALLY-BASED BASEFLOW TIMESCALE

2nd international workshop on the Impact of Groundwater in Earth system Models

Formulation

We use the long-time solution of the linearized Boussinesq equation to estimate τ as a function of catchment descriptors at global scale:

$$\boldsymbol{\tau_{G}} = \frac{S_{y}}{\pi^{2} T \delta^{2} \cos^{2} \theta + \frac{\pi^{2}}{2} K \delta \sin \theta}$$

- drainage density $\delta = A / \sum L = 1 / (2B) \text{ (m}^{-1})$
- T transmissivity: $T = K \cdot e \text{ (m}^2.\text{s}^{-1})$
- S_y specific yield (-)

δ

θ

aquifer slope: ~water table slope (-) from Fan *et al.* (2013)

τ FORMULATION (adapted from Brutsaert 2005)

Global scale datasets used in the estimation of τ

B derived from an estimation of δ using the GRIN global river network (Schneider *et al.* 2017)

 $\delta_{mean} = 0.74 \text{ km}^{-1}$

ESTIMATION OF A PHYSICALLY-BASED BASEFLOW TIME CONSTANT

GRIN HIGH-RESOLUTION DRAINAGE DENSITY (Schneider *et al.* 2017)

Global scale datasets used in the estimation of τ

 S_y from literature values (Morris & Johnson 1967)

T derived from GLHYMPS highresolution dataset (Gleeson *et al.* 2014)

GLOBAL HIGH-RESOLUTION MAP OF NEAR-SURFACE PERMEABILITY (Gleeson *et al.* 2014)

Estimation of the baseflow time constant τ at global scale

 $\tau_{G_Q50} = 65$ years

SCIENCES SORBONNE UNIVERSITÉ

estimation of a physically-based baseflow time constant

PHYSICALLY-BASED BASEFLOW TIME CONSTANT τ_G AT GLOBAL SCALE (0.5° resolution)

SIMULATING RIVER DISCHARGE WITH ORCHIDEE LAND SURFACE MODEL

Soil hydrology in ORCHIDEE land surface model

- Physically-based description of soil water fluxes using Richards equation
- soil and 11-layers
- Hydraulic properties based on van Genuchten-Mualem formulation for 3 textures (fine, medium & coarse)
- Infiltration depends on precipitation rate
- ≪ Surface Runoff = $P E_{soil}$ Infiltration
- Free Drainage at the bottom

$$\Delta t = 30 \text{ min}$$

water balance

 $\sim \sim$

 $R = P - E_{soil} - Infiltration$

SOIL HYDROLOGY IN ORCHIDEE (de Rosnay et al. 2002, d'Orgeval et al. 2008)

SIM SUF $\Delta t = 1 \text{ day}$ routing

Routing scheme in ORCHIDEE land surface model

 Cascade of linear reservoirs along the river network

 Separate reservoirs for streams, hillslopes and groundwater

SIMULATING RIVER DISCHARGE WITH ORCHIDEE LAND SURFACE MODEL

ROUTING SCHEME IN ORCHIDEE (Polcher 2003, Guimberteau *et al.* 2012)

Groundwater representation in ORCHIDEE land surface model

 Q_i (kg.s⁻¹) is the flux out of each reservoir V_i (kg) is water amount in the reservoir i

 τ_i (s) is the characteristic timescale of travel time within each reservoir i

d (m) total river length inside the grid cell θ river slope inside the grid cell g_i (s.m⁻¹) reservoir property obtained by calibration over the Senegal basin and used as a constant all over the globe

ROUTING SCHEME IN ORCHIDEE (Polcher 2003, Ngo-Duc et al. 2007, Guimberteau et al. 2012

Groundwater representation in **ORCHIDEE** land surface model

 τ_{ORC} at global scale

 $\tau_{ORC_Q50} = 45 \text{ days}$

ORCHIDEE BASEFLOW TIME CONSTANT τ_{ORC} AT GLOBAL SCALE

SIMULATING RIVER DISCHARGE WITH ORCHIDEE LAND

ORCHIDEE simulations

- ≪ WFDEI corrected by GPCC forcing (Weedon et al. 2014)
- Setween 1979 to 2010 (six-year spin up)
- Groundwater reservoir initialization

Evaluation of τ in ORCHIDEE

Simulated river discharge using τ_G compared to the reference simulation using the initial τ_{ORC}

Increased buffering of river discharge variability

EVALUATION OF THE SIMULATED AGAINST OBSERVED RIVER DISCHARGE (M³.S⁻¹) FROM GRDC BETWEEN 1985-2010

SIMULATING RIVER DISCHARGE WITH ORCHIDEE LAND SURFACE MODEL

Validation data

Evaluation of τ

 τ_G is largely overestimated when compared to references at the basin scale and not suitable for parametrization of a shallow linear groundwater reservoir.

DISCUSSION

τ issued from recession analysis using RECESS

τ_{obs} range from 18 days to 3.5 years

MAP OF ALL BASINS USED FOR τ VALIDATION. (Data from France, United Kingdom, United States and global

ON THE USE OF A PHYSICALLY-BASED BASEFLOW TIME CONSTANT IN LAND SURFACE HYDROLOGY MODELLING

2nd international workshop on the Impact of Groundwater in Earth system Models

1. Alternative scenarios for τ estimation

2. Underlying assumptions in the analytical method

Estimations of τ at global scale

$$\boldsymbol{\tau} = \frac{S_y}{\pi^2 T \delta^2 \cos^2 \theta + \frac{\pi^2}{2} K \delta \sin \theta}$$

Alternative scenarios from available global scale datasets

δ	HydroSHEDS river network (Lehner <i>et al.</i> 2008)	LCS model of GRIN (Schneider <i>et al.</i> 2017)
Sy	total porosity of GHLYMPS (Gleeson <i>et al.</i> 2014)	specific yield (Johnson 1967)
θ	horizontal	calculated from water table depths (Fan <i>et al.</i> 2013)
K	GLHYMPS 2.0 (Hushcroft <i>et al.</i> 2018)	USDA soil database
	combination of USDA & GLHYMPS	& exponential decay
Т	model calibration (Vergnes & Decharme 2012)	

Evaluation of alternative scenarios

K	GLHYMPS 2.0	USDA & exponential decay
	combination of USDA & GLHYMPS	model calibration

au from model calibration and extrapolation result in the lowest bias but still with low correlation coefficients

COMPARISON OF OBSERVED τ WITH PHYSICALLY-BASED ESTIMATIONS OF τ AND τ_{ORC}

Baseflow and catchment properties relationships

Preferential flow pathways due to natural heterogeneities in aquifers strongly influence groundwater recharge and discharge.

DISCUSSION

MULTISCALE GROUNDWATER FLOW (adapted from Schaller & Fan 2009)

Baseflow and catchment properties relationships

Numerical modelling: idealised 1-D solutions using MODFLOW considering nested flow regimes

 $R_f - \tau$ RELATIONSHIPS (adapted from Erskine & Papaiaonnou 1997)

Conclusion & perspectives

- 1. The use of a physically-based τ in ORCHIDEE deteriorates river discharge simulation due to a strong buffering effect.
- 2. A more appropriate description of the physical properties of near-surface aquifers $(T \& S_y)$ is required to provide better agreement with observations.
- 3. Future research may investigate (i) physical factors that control τ (ii) how to take into account spatial heterogeneity in τ formulation (iii) the implementation of a nonlinear storage groundwater reservoir in ORCHIDEE.

Thank you for your attention

2nd international workshop on the Impact of Groundwater in Earth system Models