
1. Introduction 
The response time of groundwater (GW) discharge to fluctuations in recharge is essential 
to predict impacts of land-use and climate change on catchment water yield. Aquifers 
impose a time-lag between changes in recharge and discharge to streams and have a 
large capacity to buffer surface water variability, depending on the scale of the system 
and its physical attributes. Over shallow water table (WT) regions, groundwater also 
influences soil moisture memory and evapotranspiration (Fig. 1). 

 Fig. 1 – Buffering effects of groundwater (adapted from Lo & Entekhabi et al. 1996) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Land surface models (LSMs) provide a suitable environment to quantitatively estimate 
these feedback mechanisms. A first-order representation of groundwater as a single 
linear storage element is frequently used in LSMs (2). Hydraulic groundwater theory 
provides an analytical framework to allow the parametrization of this reservoir, in terms of 
a baseflow characteristic timescale 𝜏 (3). Here we evaluate to what degree the use of 
this physically-based time constant in the routing scheme affects simulated river 
discharges across large catchments (4). On this basis, we discuss the reliability of such a 
global scale estimate of GW response times in  land surface hydrology modelling (5). 
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4. ORCHIDEE simulated river discharge 
ORCHIDEE is run globally in offline mode at 0.5° under a WFDEI GPCC forcing (Weedon 
et al. 2014). Results using 𝜏𝐺 (3) are compared to a reference simulation using the initial 
almost spatially constant topographic-dependent 𝜏𝑂𝑂𝑂 (2) (Fig. 5). 
 
Fig. 5 – Evaluation of the 
simulated against observed 
river discharge (m3.s-1) from 
GRDC between 1985-2010. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig. 6 – Baseflow timescale 𝝉𝑮 against 𝝉𝑶𝑶𝑶 
                                           and a reference range from recession analysis. 
 

 Increased buffering of river discharge variability ∝ drainage 
 𝜏𝐺 is largely overestimated when compared to references at the basin scale (Fig. 6) 

and not suitable for parametrization of a shallow linear groundwater reservoir. 

6. Conclusion and perspectives 
 The use of a physically-based 𝜏 in ORCHIDEE deteriorates river discharge simulation 

due to a strong buffering effect      rapid local flow is dominant. 
 A more appropriate description of the physical properties of near-surface aquifers  

(𝑇 & 𝑛𝑒) is required to provide better agreement with observations. 
 Future research may investigate (i) how to take into account spatial heterogeneity 

and climate variability in 𝜏 formulation (ii) the implementation of a nonlinear storage 
groundwater reservoir in ORCHIDEE. 

 

5. Discussion 
 Relevance and accuracy of global estimates of aquifer hydraulic properties 
𝛿: from GRIN, a river network describing natural heterogeneities and in agreement with observations 
𝑒, 𝜃, 𝑛𝑒: uncertain but expected variations of about one order of magnitude 
𝐾: a mean value per hydrolithology class, varies up to 6 orders of magnitude, a higher range than in soil 
hydraulic conductivity databases (e.g. USDA) or LSMs with groundwater model (e.g. Vergnes et al. 2012) 

 Underlying assumptions in the analytical method: quasi-steady state approach, shallow 
unconfined aquifer with small depth to length ratio, homogeneous isotropic aquifers  

 
 Fig. 7 – Multiscale 
 groundwater flow 
 (adapted from 
 Schaller & Fan 2009) 
 
 
 
 
 
 
 
Preferential flow pathways due to natural heterogeneities in aquifers (Fig. 7) strongly 
influence groundwater recharge and discharge. 

 Relationships between the groundwater outflow rate and the controlling physical and 
hydrologic parameters of the basin (Fig. 8) 

Analytical approach: minimum baseflows in the annual cycle (𝑅𝑓) as function of the aquifer response time 
(Erskine & Papaiaonnou 1997) 
Numerical modelling: idealised 1-D solutions using MODFLOW (Harbaugh & McDonald 1996) considering 
subsurface heterogeneity and transient recharge 
Real small catchments (Falcone 2011, Poncelet 2016): land slope and drainage density of the watersheds, 
effective porosity and hydraulic conductivity of the underlying shallow aquifers 

                  Fig. 8 – 𝑶𝒇 - 𝝉 relationships 
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3. Estimation of a physically-based baseflow timescale 
We use the long-time solution of the linearized Boussinesq equation (Brutsaert 2005) to 
estimate τ as a function of catchment descriptors (Fig. 3) at global scale (Fig. 4). 
 
                 Fig. 3 – 𝝉 formulation 
 
 
 
 
 
 
 𝛿 drainage density: 𝛿 = 𝐴 ∑𝐿⁄ = 1 2𝐵⁄  (m-1) 
 𝑇 transmissivity: 𝑇 = 𝐾 ∙ 𝑒 (m2.s-1) 
 𝑛𝑒 effective porosity (-) 
 𝜃 aquifer slope: ~water table slope (-) 
      from Fan et al. (2013) 
 
 Fig. 4 – Physically-based 
 baseflow time constant 𝝉𝑮 
 at global scale (0.5° resolution) 
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𝑇 and 𝑛𝑒 derived from GLHYMPS high-resolution datasets 
(Gleeson et al. 2014) 

& literature values (𝑛𝑒, Morris & Johnson 1967) 
𝐵 derived from an estimation of 𝛿 using the GRIN global 

river network (Schneider et al. 2017) 
 𝛿𝑚𝑒𝑚𝑚 = 0.74 km-1 

𝝉𝑮_𝑸𝑸𝑸 = 65 years 

2. Groundwater representation in land surface models 
ORCHIDEE (Krinner et al. 2005) is a land surface model developed in Institut Pierre Simon 
Laplace that allows the simulation of the terrestrial water and energy balances. In the 
routing scheme, each successive sub-basin in grid cells includes three linear reservoirs for 
stream, hillslope and groundwater (Fig. 2). 
 
        Fig. 2 – Soil hydrology and routing scheme in ORCHIDEE 
 
 

 

 

 

 

 

 

 

 
  𝑄𝑖 (kg.s-1) is the flux out of each reservoir 
  𝑉𝑖 (kg) is water amount in the reservoir 𝑖 
 

𝝉𝒊 (s) is the characteristic timescale of travel time within each reservoir 𝒊 
 
 𝑑 (m) is the river length from one subgrid basin to the next one 
 𝜃 is the height lost over river path / river path length 
 𝑔𝑖 (s.m-1) is a reservoir property estimated empirically using observed discharge 
 of the  Senegal River (Ngo-Duc et al. 2007) and assumed constant over the globe 
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