Deep Saline Aquifers for Geological Storage of CO₂ and Energy

27 - 29 May 2009, Rueil-Malmaison (France)

PREFERRED TOPIC: Storage of CO₂ in saline aquifers: processes induced by CO₂ disposals – Hydrodynamics: pressure build-up multiphase flow, conductivity of faults

POTENTIAL HYDRODYNAMICS IMPACTS OF LARGE-SCALE CO₂ STORAGE IN THE DOGGER DEEP SALINE AQUIFER OF THE PARIS BASIN

Anne JOST^{1,2}, Julio GONÇALVES^{1,2}, Guillaume BOUQUARD^{1,2} and Hugo DAYAN^{1,2}

¹UPMC Univ Paris 06, UMR 7619, Sisyphe, F-75005, Paris, France ²CNRS, UMR 7619, Sisyphe, F-75005, Paris, France

The Dogger reservoir is one of the main deep aquifers of the Paris basin, which has been identified as a potential candidate for large-scale storage of CO_2 . If widespread industrial deployment occurs in this formation, large amounts of CO_2 would have to be injected. CO_2 could physically displace large volumes of saline waters and may cause pressure perturbation in the deep saline aquifer, affecting a volume of the basin significantly larger that the CO_2 plume itself. It is of environmental concern as it may impact shallow groundwater. Within this framework, our objective is to provide an evaluation of the hydrodynamics impacts of large CO_2 storage in the Dogger formation at the basin-scale. We conducted numerical simulations using a conventional existing flow model. We explore the effects of the pressure anomaly caused by the injection of a CO_2 equivalent water volume and estimate changes in discharge and recharge zones and in the stream baseflow.