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[1] We investigate the ability of combining the Karhunen-Loève transform (KLT) with
the kriging method to extract regional information from a set of point measurements.
This method was applied to a set of 195 piezometric head time series over a period of
17 years from observation wells distributed within the French and German area of
the Rhine valley alluvial groundwater body. Piezometric head time series are analyzed
with KLT in order to highlight characteristic temporal signals, classified from the most
energetic (global) to the least energetic (local) signals. The first five signals amount
to 80% of the global variance of the system and are inferred to represent different
hydrological contributions (exchanges with rivers and rainfall), but they also represent a
significant anthropogenic component. Kriging is then used to regionalize the signals and
to build a reconstruction model of the behavior of the whole aquifer containing only
filtered information coming from identified source signals.
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1. Introduction

[2] The Rhine valley aquifer is a privileged object of
study for several reasons: (1) The aquifer is a huge alluvial
reservoir containing the largest European groundwater
resource. (2) The aquifer is well known, instrumented, and
monitored; many hydrological studies have already been
carried out, providing abundant additional data. (3) the
alluvial aquifer is not bound to a single river, but receives
various inflows: Periodic rainfall due to the semicontinental
climate of the region, summer inflow from the Rhine River
due to snow melting in the Alps and spring river floods
from the Vosges and the Black Forest mountains.
[3] We needed to extract smoothed regional information

from these point data in order to solve other problems such
as the calculation of the geodetic effect of hydrological
loading. We therefore decide to find out the main common
source signals, which combine differently in the local
measurements. The smoothing problem is then expressed
as finding a mean behavior for the local combinations of
these source signals. In this paper, the variation of the
piezometric head of an aquifer DH is considered as the
linear superposition of several contributions Hk due to
various sources with associated weight ak: DH = SkakHk.
The blind separation of the sources refers to the problem of
reproducing the contribution of source signals from piezo-
metric head values, without making any assumption or
exploiting any external knowledge, except for some math-

ematical considerations. ‘‘Blind’’ means that the statistics of
the source signals and the way they mix are unknown.
Several mathematical or physical models are used to mix
contributions, for different purposes: e.g., immediate, con-
volution-based, or spectral-based models.
[4] In this work, the temporal contributions Hk and

associated weights ak are determined using immediate
mix model. As a consequence, the method neglect the
propagation effects of the physical processes involved.
[5] The source processes are represented by a set of

piezometric head time series sampled at various locations
within the system. Here, we use a statistical multivariate
analysis, the Karhunen-Loève transform (KLT), to sum up
the observations into a set of a minimum number of
temporal characteristic signals.
[6] The principle of KLT has frequently been used under

different names depending on the applications and fields of
study: singular value decomposition (SVD) in geomagnetics
to search for particular temporal signals [Pereira, 2004] and
empirical orthogonal function (EOF) analysis inmeteorology
in order to analyze spatial structure of atmospheric fields
[Grimmer, 1963]. The link between both methods is given by
[Gerbrands, 1981]. The method has also been applied on
hydrological purpose, for example, byGottschalk [1985], for
the interpolation of water balance elements. An evolution of
KLT method, multichannel singular spectrum analysis
(MSSA) has also been used by Shun and Duffy [1999] in
order to highlight space-time patterns of precipitation, tem-
perature and runoff.
[7] In this work, the Karhunen-Loève transform is first

used to separate space and time and define a new orthogonal
basis where each observed piezometric head time series can
be expressed as the sum of a small number of characteristic
temporal signals Hk calculated for the whole aquifer and
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associated with spatial information ak for each piezometric
head. This spatial information is then interpreted and
regionalized by geostatistical methods in order to make a
statistical reconstruction model of the model of the aquifer
containing only sound information.

2. Data Description

2.1. Sampling Area

[8] The study area (see Figure 1) encompasses the
southern part of the Upper Rhine valley between the Swiss
city of Basel to the south and the German city of Karlsruhe
to the north. The left bank of the Rhine, in the west, belongs
to the Alsace region in France, the right bank in the east to
the German land of Baden-Württemberg. The shallow
groundwater body is contained in a mighty sand and gravel
alluvial aquifer, up to 200 m thick, deposited in the Rhine
graben since the end of the Tertiary by the Rhine and its
tributaries [Sittler, 1969; Düringer, 1988; Villemin et al.,
1986]. The aquifer lies in the plain between the Vosges
mountain to the west and the Black Forest mountain to the
east and is up to 40 km in width.
[9] The north-south trending Vosges mountain lies per-

pendicular to the dominant atmospheric flow coming from
the west and receives an important winter rainfall which is
collected by the Vosges and Black Forest Mountain catch-
ments. This also creates high contrasts in the distribution of
rainfall in the plain.

[10] The rivers originating in the Vosges mountain gen-
erally trend west-east down to the plain, where they are
captured by the Ill River south of Strasbourg and by the
Rhine to the north. The Ill and Rhine rivers run almost
parallel and follow the flow direction of the groundwater,
which is N20E.
[11] Several canals have been laid out between the Ill and

Rhine for navigation, irrigation, or hydroelectric energy.
Some of them also play a role in sustaining groundwater
levels in summer.

2.2. Sampling and Analytical Procedures

[12] The APRONA (Association for groundwater protec-
tion in Alsace) monitors 200 observation wells covering the
French side of the Rhine valley alluvial groundwater body.
The corresponding section in Germany is covered by
59 reference observation wells, managed by the LfU (the
environment protection authority of Baden-Württemberg).
The sampling rate is one measurement a week and more for
automated measuring systems.
[13] The time frame for this study has been chosen to

cover the period from July 1986 to December 2003, i.e.,
908 weeks. Several corrections have been performed on the
time series: anomalous spikes and jumps are corrected, the
short gaps are interpolated, and unreliable series are deleted.
In the end, only 195 observation wells have been retained
for this study. In order to identify the global contributions of
piezometric head variations, each piezometric head must

Figure 1. (left) Sampling area. Rhenan aquifer body is delimited in the west by Vosges mountains, in
the east by the Black Forest, and in the south by Sundgau. Note the great number of rivers flowing down
to the valley. Cities, from north to south, are Strasbourg, Selestat, Colmar, and Mulhouse. Major rivers
are the Ill River (the western one) and the Rhine River (the eastern one). Note the straight canals between
these two rivers. Pluses indicate French piezometers; crosses indicate the German piezometers.
Coordinates are indicated in decimal degrees.
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have the same weight in the analysis. So all time series were
scaled to variance unit, in order to avoid the analysis to
focus on the piezometric head recording large variations.
The mean of the time series is also removed.
[14] The observation matrix Aij = xj(ti) is constructed with

the selected set of time series sampled at point xj, j = 1. . .nvar,
nvar = 195, at times ti, i = 1. . .nobs,nobs = 908.

2.3. Reference Contributions

[15] The statistical signals determined in this work are
ultimately confronted to three physical observations, which
should be representative for the whole area of study. In this
way, the ‘‘mountain river flow’’ is calculated as the sum of
water flow coming from Vosges and Black Forest mountain
rivers and sampled at the entrance of the Rhine aquifer.
‘‘Effective rainfall,’’ given by the French Meteorological
Institute, is computed as rainfall minus evapotranspiration.
Finally, ‘‘Rhine flow’’ is Rhine River flow measured at the
entrance of the aquifer.

3. Processing the Data by KLT and Kriging

[16] In geostatistics the measured value of a parameter
z(xk) at a sampling location xk within a specified region D is
regarded as the outcome of a random mechanism, i.e., one
draw from the random variable Z(xk). This argument can be
extended to all other points in the region so that the
regionalized variable z(x), x 2 D can be viewed as one draw
from an infinite set of random variables known as the
random function Z(x), x 2 D.

3.1. Karhunen-Loève Transform

[17] This method is used to decompose observed fields
into fewer sets of orthogonal, and thereby mathematically
uncorrelated, fields. See Saporta [1990], Wackernagel
[1995], Wilks [1995], von Storch and Zwiers [1999], and
Jolliffe [2002] for more details. One result is that redundant
information is removed.
[18] This method can be considered as a Fourier trans-

form. However, the kernel of the transform is not calculated
with complex exponential functions but with the informa-
tion contained in the measurements (in this case, correla-
tions between time series, and more precisely, the
eigenvectors of the correlation matrix), in order to optimally
describe the system of study.
[19] The principle of KLT can be approached from a

geostatistical point of view. Indeed, the objective consists in
deciphering the regionalized variable Z(X, t). We assume
here underlying temporal processes Yj (t), j = 1. . .nvar, also
called eigenvectors or characteristic signals that will set up a
new orthogonal basis, associated with the spatial informa-
tion aj(X) (or projections). So, Z can be written as follows:
Z(X, t) = Sj=1

L aj(X).Yj(t) + �(X, t) where e is the residue
between the regionalized variable and the explained pro-
cesses Z* = Sj=1

L aj(x)Yj(t). Both spatial information and
characteristic signals are determined by minimizing the
variance of the estimation error � = Z � Z*, under the
assumption that {Yj}, j = 1. . .nvar is an orthogonal basis.
[20] KLT is carried out by diagonalization of the correla-

tion-covariance matrix tAA, where tA denotes the transposed
of A. This diagonalization exhibits a set of eigenvalues
{lj}, j = 1. . .nvar, classified in decreasing order, with asso-
ciated eigenvectors {Yj}. The amount of variance (energy)

spanned by each eigenvector depends on the relative value
of its eigenvalue with respect to the sum of all eigenvalues.
It must be pointed out that this is purely statistical method,
and the calculated Yj have, a priori, no direct physical
meaning.
[21] The method exposed here requires the head varia-

tions to be approximated by a linear combination of various
sources. The Upper Rhine valley aquifer is free; therefore
this assumption is only valid in subdomains where piezo-
metric head variations can be considered as negligible with
respect to the thickness of the aquifer, so that a constant
transmissivity can be defined. This is not true in the region
of the aquifer south of Colmar. As for eastern and western
limits, the aquifer is hosted in a graben, so the body of the
aquifer becomes quickly thick enough considering piezo-
metric head variations. This issue will be discussed later.
[22] In order to reduce the dimensionality of the system

and optimally approximate the original data set, the limited
number L of characteristic signals is always L � min(nvar,
nobs). Some criteria (e.g., the amount of explicated variance
and stability of the created subspace) allow to correctly
choose L. Here we will examine a noise criteria.
[23] KLT has the capacity to extract physical signals from

noise. An overview of this issue is described by Broomhead
and King [1986] and Elsner and Tsonis [1996] for white and
colored noise. Considering a set of data without noise A,
where time series are arranged in columns, with associated
eigenvalues {lj}, j = 1. . .nvar of tAA. We will use the blank
noise matrix N, where each column nj follows a normal law
(mean zero, variance s2). So, the observed values can be
written as A = A + N. In the case of no spatial nor temporal
signal-noise correlation, the noise alters the original eigen-
values with a bias, and the new eigenvalues can be written
as follows: lj

2 = lj
2 + Ms2, M = max(nobs, nvar). As the

series {lj}, j = 1. . .nvar is decreasing and converging to 0,
the new eigenvalues converge to s

ffiffiffiffiffi
M

p
. In practice, such a

level can never be observed, but this value can be used as a
criteria to choose the size L of the series, considering that
the eigenvectors are correctly dissociated from noise when
their associated eigenvalue satisfies l > s

ffiffiffiffiffi
M

p
.

[24] A difficulty in the interpretation of the eigenvector
Yk(t) may arise if two or more eigenvectors have the same
eigenvalue (degenerate multiplet [see North et al., 1982]). In
this case, it can be demonstrated that any linear combination
of the degenerated eigenvectors is a solution in the diago-
nalization of the covariance matrix.
[25] The investigation of the degeneracy eigenvalues

requires a measure of uncertainty in the determination of
the eigenvectors due to sampling. An estimation of this
perturbation has been developed by North et al. [1982]:
(1) The uncertainty on the determination of the eigenvalue
Dlk� lk(2N)

1/2 whereN is the number of realization of Z(X, t)
(in this case,N = nvar). (2) Sampling errors on the eigenvector

are of the order of the parameter Dlk

lj�lx
, where lj is the closer

eigenvalue to lk. So eigenvectors have small sampling
errors if eigenvalues are well separated (lj � lk large)
and correctly sampled (N large, so Dlk small).

3.2. Kriging

[26] The objective of kriging is to make use of the
measured values at a series of neighboring locations xk, to
provide statistically sound estimation of the values of the
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parameter at locations x, where no measurement has been
made.
[27] An important tool in geostatistics is the experimental

variogram g*(~h), which quantifies the spatial variability of
the parameter under study. It is defined as a function of the
point separation vector ~h (vector in geographical space),
g*(h) = 1

2
Var(z(xk +~h) � z(xk)) =

1
2n
Sxk2D (z(xk +~h) � z(xk))2

and measures the dissimilarity (variance) between all the pairs
of the regionalized variables at sampling location xk 2 D with
respect to their spatial separation~h. Some tolerance concerning
the length and the orientation of the vector~hmaybe introduced.
Although the distribution of projections is anisotropic, the
problem can be reduced to an isotropic problem by a linear
transformation of the coordinates, so that the variogram
depends only on the modulus of~h [see Journel and Huijbregts,
1978]. This leads to a function describing the spatial structure
of the parameter under study.
[28] The experimental variogram needs to be approxi-

mated by a theoretical function g(~h), which allows to
estimate the variogram analytically for any distance ~h; this
function is called the variogram model. In practice, this
modeling step is mainly interactive and this is one of the
major advantages of kriging: representing, interrogating the
data and analyzing the spatial structure of the stochastic
process under study before performing the estimation.
[29] Once the variogram model has been fitted to the

experimental variogram, it is possible to perform the esti-
mation by kriging. A linear estimator is used Z*(x) = Slk
Z(xk), where the unknowns are the weights lk. The values of
these weights are determined by minimizing the variance
of the estimation error (Z* � Z), which leads to a system of
linear equations (containing explicitly the theoretical vario-
gram function) under some assumptions about the random
function Z. A complete overview of kriging is given by
Wackernagel [1995].
[30] By construction, kriging is an unbiased estimator,

i.e., the estimation error has zero expectation in the prob-
abilistic model. This mean that, when considering the
regionalized variable, the average error on point estimations
is zero over a large area.

3.3. Kriging in KLT Space

[31] KLT is a linear transform of a correlated time series
from a region into a set of orthogonal and thus uncorrelated
functions. This results in a set of series {Yj(t)} describing
the temporal variation of the original data set, and in a set of

series aj(X) describing the spatial variability in the region
from which the original series are collected.
[32] These projections (or coordinates) aj(X) are calculated

for each observation and for each eigenvector. Variography
and kriging are carried out on these coordinates aj(X) of the
orthogonal basis {Yj(t)} in order to regionalize them. One
advantage of using KLT before the estimation process lies
in determining the projections aj(X) for each separated
physical process, and so in interpolating a smooth parame-
ter (compared to piezometric head level for example).
The major advantage of kriging is to respect the spatial struc-
ture (quantified by the variogram) of the parameter when
interpolating.
[33] The combination of both mathematical methods has

already been explored by Biau et al. [1998] as a downscaling
tool of North Atlantic sea level pressure in order to recon-
struct monthly winter precipitations. The authors emphasize
the ability of kriging to reproduce correctly the mean of a
phenomenon, and its smoothing effect (by underestimation of
the variance). However, in their work they build up spatial
eigenvectors (a pattern of spatial behavior), and therefore use
kriging as a temporal interpolator in the subspace created by
the two first eigenvectors. In our case, temporal processes,
driven by external source signals in the aquifer, are taken to
be the main signals that should be identified. Then, spatially
speaking, we try to highlight for each process an average
behavior of the groundwater body and its large-scale
variations.
[34] As the projections to be kriged have an indirect

physical meaning, it is difficult to justify the required
underlying hypothesis. A priori, the intrinsic property is
satisfied when dealing with coordinates. A posteriori, vario-
grams of the projections have a spherical behavior, so these
projections are likely to be kriged.
[35] Here KLT is used to separate space and time. Once

global underlying temporal processes {Yj(t)} have been
determined, it is possible to return to local information
through the regionalization of the associated projections
aj (X) thanks to kriging. So, time series can be reconstructed
at any location where no measurement has been made. In
this way, a statistical model of the aquifer is obtained
coupling KLT and kriging.

4. Results and Discussion

4.1. Eigenvalues of the System

[36] The amount of variance explained by each eigen-
vector depends on the relative value of its eigenvalue with
respect to the total sum of eigenvalues. In Table 1 the most
energetic signals of the piezometric variations are identified.
We decided to take into account the first five eigenvectors
(see Figure 2) to model the behavior of the aquifer for three
reasons: (1) More than 80% of the variance of the system is
explained. (2) The noise criterion shows that eigenvectors
explaining less than 1% of the variance are not well
separated from noise. (3) The step between the 5th and
the 6th eigenvalues ensures the stability of the subspace
generated by these five first eigenvectors.
[37] The first three eigenvectors have eigenvalues that are

well separated (see plus/minus error in Table 1), so these
eigenvectors are correctly defined by the method. The forth
and the fifth eigenvectors are not correctly resolved because

Table 1. Classified Eigenvalues, Amount of Explained Variance,

and Associated Sampling Error

Classified Eigenvaluea
Amount of Explained

Varianceb
Cumulative Sum

of Explained Variance

1 44 ± 3.5% 44%
2 20 ± 1.5% 64%
3 9 ±0.7% 75%
4 4 ± 0.4% 80%
5 4 ± 0.3% 84%
6 1 ± 0.2% 85%
7 1 ± 0.2% 86%
. . .195 0.000003% 100%

aReferring to eigenvectors.
bEigenvalue divided by the cumulative sum of eigenvalues.
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their eigenvalues are very close, so the direct interpretation
of these two eigenvectors would be misleading. However,
two main characteristics must be highlighted because any
linear combination will not remove these characteristics: a
long-term evolution for the forth eigenvector and a strong
annual term for the fifth (see Figure 2).
[38] So an optimal approximative representation of the

original anomalies of the multivariate field Z is obtained by
projecting it onto a subspace of dimension five. Each nor-
malized piezometric head variation D H(X, t) can be written
as a linear combination of these five temporal eigenvectors
Yj(t) and associated spatial information aj(X): D H(X, t) =
Sj = 1
5 aj(X)Yj(t). The spatial information aj(X) is determined

by projecting each normalized piezometric head variation
on the temporal basis {Yj}, j = 1..5.

4.2. Physical Interpretation of Eigenvectors

[39] The KLT method is built on the assumption that the
set of eigenvectors {Yj(t)} is an orthogonal basis. This
property constitutes, however, a strong constraint which
puts limits to the physical interpretability of individual
eigenvectors since physical signals tend generally to be
nonorthogonal [Simmons et al., 1983]. As a consequence,
physical interpretability of eigenvectors can be controversial
[see, e.g., Dommenget and Latif, 2002; Swadhin et al.,
2002].
[40] The source signals that are likely to induce a piezo-

metric head variation in the Upper Rhine aquifer as a whole
are well known: precipitations, mountain river contribution,
Rhine River contribution that have been determined in the
reference contributions section. These reference contribu-
tions are however correlated (river floods are generated by

rainfalls, almost all environmental signal have a predomi-
nant annual term), and a simple assignment of the eigen-
vector to a physical contribution through time series
analysis would be inaccurate. The quantitative spatial
information is also used to check whether the temporal
assignment corresponds to a spatial reality. This spatial
information should confirm that mountain river have a more
important contribution at mountain piedmont, etc.
[41] So, the three first eigenvectors Yj(t) are confronted

to these signals of physical meaning for both short-term
and long-term variations (respectively periods lower than
10 months and greater than 18 months). The coherence of
the eventual assignment is confirmed by the interpretation
of the spatial distribution. Discussion is finally conducted
to determine whether the eigenvectors have a physical
meaning or not.

4.3. Projections on Each Eigenvector

4.3.1. First Characteristic Signal: Mountain
River Contribution (Except Rhine)
[42] The most energetic signal (44% of explained vari-

ance) could be interpreted as the mountain river contribu-
tion into the aquifer (Rhine River excepted). The set of
floods observed in winter and in spring is modulated by an
annual period, which is maximal in winter and minimal in
summer. In fact, winter rainfall on the Vosges and the Black
Forest are largely collected by the groundwater body
through the rivers which infiltrate into the aquifer. The
statistical temporal signal is consistent with the physical
signals of the rivers, both in the low- and high-frequency
bands (see Figures 3 and 4).

Figure 2. Eigenvectors Yk(t) obtained after KLT, classified in descending order. Note that the means of
the eigenvectors are modified for more clarity.
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Figure 4. Week river flow at the entrance of the aquifer (except Rhine) toward first eigenvector EV1.

Figure 3. Annual river flow at the entrance of the aquifer (except Rhine) toward long-period filtered
first eigenvector EV1.
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[43] The variogram of the projections (see Figure 5)
shows a well-defined structure, with a range of approxi-
mately 20 km and a continuity inherited from the diffusive
properties of the aquifer. The variogram also highlights
anisotropy in the N20E direction, which is consistent with
the mean flow direction in the aquifer.
[44] The experimental variogram is modeled by a spher-

ical model (see Figure 5), defined as

gs hð Þ ¼ C 3
2

hj j
r
� 1

2

hj j3
r3

� �
if 0 
 hj j 
 r

C if hj j > r

(

where r is the range, or correlation length of the spatial
variation of behavior. C is the scale and converges toward
the global variance of the data.
[45] The distribution of the projections (Figure 6) of

mountain river contribution observed here is consistent with
the geographic configuration of the aquifer. The most
sensitive part of the distribution is located in the mountain
foothills and in the vicinity of the Ill River. Closer to the
Rhine River, the groundwater is less sensitive to mountain
river inflow. Note that this eigenvector is the only one that
has a spatial average that is nonzero, i.e., the only one which
brings a positive water balance to the aquifer.
4.3.2. Second Characteristic Signal: Effective Rainfalls
Contribution (Immediate Reaction)
[46] The second characteristic signal is much smoother

and represents 20% of the global behavior. It can be
interpreted as effective rainfall, which is maximal in winter
(Figures 7 and 8). Since phase differences are not managed
by the method, the infiltration signal is associated with short
percolation times (in this case, percolation times are lower
than 2 weeks, and the aquifer is highly sensitive to rainfalls
[Cloots-Hirsch, 1990; Perez et al., 1999]). The signal also
reveals the summer water loss, i.e., exfiltration or drainage.
Indeed, groundwater is generally very shallow in the Rhine

aquifer north of Colmar, generating the wetlands known as
‘‘Ried’’. As in the case of the first eigenvector, the vario-
gram shows a strong continuity and a 20 km structure as
well as a N20E directional anisotropy. It has been modeled
by a spherical structure.
[47] In specific areas (Figure 9), such as in the Hardt

forest and in the south of Strasbourg, the projections are
negative. As a consequence, the characteristic signal is
opposite to the piezometric head time series. These negative
spatial projections are generated by the fact that two
phenomenons are out of phase, they are therefore inserted
in the same eigenvector with either positive or negative
projection. Indeed, negative values reflects the impact of
summer contribution from the Rhine River and from the
Hardt canal (into which Rhine water is piped in the summer
season for irrigation needs), that is temporally opposite to
the evapotranspiration contribution.
4.3.3. Third Characteristic Signal: Rhine Contribution
[48] The third eigenvector can be associated with Rhine

inflow into the aquifer. The high-frequency part (Figure 10)
of the signal matches with the observed flow of the Rhine.
The low-frequency component (Figure 11) of the character-
istic signal, however, does not correlate well with annual
Rhine flow. This discrepancy can be explained by the
projection distribution: the signal describing the Rhine flow

Figure 5. Experimental variogram (crosses) with asso-
ciated spherical model (curve) of the projections a1(X) on
the first eigenvector EV1. Data variance is also plotted
(dashed line).

Figure 6. Regionalization of the projections a1(X) on the
first eigenvector EV1, describing relative importance of
river contribution to aquifer.
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at high frequencies is modulated by a low-frequency con-
tribution from the Sundgau area (where projections are
negatives). Here is an example of the ‘‘construction effect’’
generated by the orthogonality required by the mathematical
method [Simmons et al., 1983]. The distribution of the
positive projections (Figure 12) concentrates along the
course of the Rhine river and reveals the main exchange
areas between the Rhine River and the groundwater body,
such as in the south of Strasbourg and Strasbourg harbor,
where the Rhine and groundwater levels are equilibrated by
the docking basins. The projections are almost equal to zero
on the Vosges and Black Forest mountains foothills except

in the northeast of Strasbourg where Rhine water is cana-
lized for irrigation.
4.3.4. Fourth Characteristic Signal
[49] The fourth characteristic signal representing 4% of

the global variance is the first correction signal. Interpreta-
tion is delicate, but from a temporal point of view, a water
‘‘stocking-destocking’’ effect should be highlighted (see
Figure 2). This eigenvector is the only vector whose vario-
gram shows a linear behavior with a nugget effect at 2/3 of
the variance. It therefore does not reveal any structure.
Generally, the projections are equal to zero (Figure 13)
but pointing out a few specific areas such as the area
between Mulhouse and Colmar where the Ill River infil-

Figure 7. Annual effective rainfalls toward long-period filtered second eigenvector EV2.

Figure 8. Week effective rainfalls toward second eigenvector EV2.
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trates into the aquifer. In 1990, a strong flood led to the
decolmation of the river bed of the Ill River, which caused
higher infiltration rates and depletion of the river flows in
summer that had to be compensated by piping water from
the Rhine River through the Huningue Canal in Mulhouse
in order to sustain its course [Jaillard, 2003].
4.3.5. Fifth Characteristic Signal
[50] The fifth and last eigenvector (Figure 14) is the second

correction signal, and precautions should be taken for inter-
pretation. From a temporal point of view (see Figure 2), the
strong annual variation of this eigenvector is noticeable, with
a maximum in winter and sharp minima corresponding to
winter rainfalls and associated river floods.
[51] The variogram shows a continuous phenomenon

with a structure of around 10 km. Because of the sparse
sampling in the north of the aquifer compared to the
correlation length, spatial interpretation could be problem-
atic. Generally speaking, the dark colors (negative projec-
tions, i.e., amplification of winter rainfalls and river floods
in high water situations and amplification of drainage in
shallow water) are concentrated in the center of the valley,
whereas light colors (positive projections, diminution of
effect of winter rainfalls and river floods in high water
situations and diminution of drainage in shallow water) are
distributed on the borders. When focusing on the center of
the aquifer, where sampling is tighter, a few elongated areas
even have stronger negative projections. This means that
annual variations have a much more significant amplitude
than described by the two first characteristic signals.
[52] This eigenvector may be interpreted as the correction

of the nonlinearity of the diffusive equation due to the small
thickness of the aquifer toward piezometric head variations
(light colors are distributed on the eastern and western
borders, and especially in the south). In fact, the mathemat-
ical method strives to describe at best the energy of the
piezometric head variations of the system as a whole. As a
consequence, a global ‘‘linear’’ behavior is determined for
the aquifer as a whole. A correction of the signal is then

Figure 9. Regionalization of the projections a2(X) on the
second eigenvector EV2, describing relative importance of
effective rainfall contribution to aquifer (positive values).
The out-of-phase signal (negative values) describes the
summer contribution from Rhine and associated canals.

Figure 10. Weekly Rhine flow at the entrance of the aquifer toward the third eigenvector EV3.
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Figure 11. Annual Rhine flow at the entrance of the aquifer toward long-period filtered third
eigenvector EV3.

Figure 12. Regionalization of the projections a3(X) on the
third eigenvector EV3, describing relative importance of the
Rhine contribution to the aquifer (positive values).

Figure 13. Regionalization of the projections a4(X) on the
fourth eigenvector EV4. The long-term variation of EV4
describes the increase of the water table consecutive to the
decolmation of the Ill River in 1990 (blank values).
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necessary to ‘‘complete the behavior’’ more locally in order
to adjust the first linear behavior: A nonlinear behavior can
be approximated as the sum of two linear behaviors.
[53] In the center of the aquifer, this eigenvector also

seems to describe differences in aquifer properties. The
shape of these north-south black structures cannot be
accurately determined because of the sparse spatial sam-
pling, but it could be interpreted as possible paleochannels.
Indeed, branches of the Rhine River have been spreading in
the valley, because of the flat topography, drawing a lot of
islands and peninsula. From the 17th century, civil works
were carried out in order to canalize the Rhine River and
drain wetlands [Descombes, 1985].

4.4. Discussion

4.4.1. Flaws in the Description of the System
[54] The statistical model set up with the regionalization

of the first five eigenvectors describes 80% of the variance.
The missing 20% are considered as noise by the method,
i.e., real noise or processes that are too local to be distin-
guished from noise. Globally speaking, the main behavior
of the aquifer is well described. In Figure 15 the Nash
efficiency for the reconstructed piezometric head is shown.
Nash efficiency N [Nash and Sutcliffe, 1970] is defined as a

function of observed and reconstructed piezometric head
variations Hobserved and Hsimulated, and mean piezometric
head variation E(Hobserved) is defined as

N ¼ 1� St Hobserved tð Þ � Hsimulated tð Þð Þ2

St Hobserved tð Þ � E Hobserved tð Þð Þð Þ2

Sixty percent of the observation wells have a Nash
efficiency higher than 0.7, and 80% are higher than 0.5.
[55] The major problems are located in the center of the

alluvial plain south of Strasbourg. In this area, a large man-
made lake equilibrates the groundwater level with the Rhine
level, resulting in very low piezometric head variations. The
spatial scarcity of the data should also be noted in this area
(four observation wells only). Another problematic area is
located in the northeast side of the valley close to the Black
Forest mountains, where water coming from the Rhine is
used for irrigation.
[56] Temporally speaking, KLT is a model of immediate

mix, so propagation effects of the physical processes are
neglected, and amplitude errors may be introduced. Better
results are obtained when quasi static phenomena are
sampled. In our case a weekly sampling is surely optimal

Figure 14. Regionalization of the projections a5(X) on the
fifth eigenvector EV5, the annual correction of the first and
second eigenvectors. Negative values indicate a stronger
influence by rain and river contribution.

Figure 15. Regionalization of Nash-Sutcliffe efficiency of
reconstructed piezometric head variations of the first five
eigenvectors.
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to separate correctly the source signals into the aquifer and
preserve information about river floods.
[57] Spatially speaking, errors may be generated by the

smoothing effect of kriging [Chauvet, 1994], so difficulties
could arise in the case of (1) strong local behavior of an
observation well or (2) sparse sampling. In this study, each
piezometric time series has been normalized (amplitude
divided by temporal variance), meaning that the reconstruc-
tion of the time series requires a spatial interpolation of this
temporal variance. In a similar study on separate hydrolog-
ical basins [Hisdal and Tveito, 1992] kriging of temporal
standard deviation gave unsatisfactory results due to its
large spatial variability. Results are more reliable in our
case because kriging is applied to temporal variance of the
time series (which is an additive field) on a single hydro-
logical unit.
[58] On the whole, when confronting unused data to

reconstructed time series at the same point (see Figure 16
for an example), the error is equivalent to the one calculated
for the whole aquifer.
4.4.2. Robustness of the Method
[59] A second calculation was carried out on only the

French part of the Rhine aquifer (149 out of 195 observation
wells, i.e., 75% of data), and a third one was carried out on
only the German part (25% of observation wells). The first
three major eigenvectors are almost identical to those
derived from the study of the whole aquifer (see Table 2
for correlation coefficients).
[60] Phases of floods and annual variations correctly

described, being only flood amplitudes slightly different
between the various calculations. As a consequence, the
spatial distribution of the projection is also identical too.
This is important because the method succeeds in extracting
the major eigenvectors thanks to a limited number of
measurements. Adding data helps in separating signals from
noise. As the two correction signals reflect more local

behavior, it is natural to have a lower agreement between
these eigenvectors.

5. Conclusion

[61] The temporal variation of 195 piezometric heads
from observation wells has been adequately described by
three eigenvectors dealing with mean contribution from the
river and hydrometeorological forcings into the aquifer, and
two correction signals associated with the nonlinearity of
the diffusion equation, environmental shaping and differ-
ences in the aquifer properties. These five characteristic
signals have been derived for the entire aquifer. The spatial
information was also conveniently downscaled using krig-
ing to describe local behaviors. A statistical model of the
aquifer has thus been established thanks to the combination
of KLT and kriging. Only a few set of measurements is
needed to extract the source signals. It is also possible to
extract either a spatial or a temporal contribution from each
time series, i.e., to (1) discriminate between the various
contributions (rainfall, exchanges with rivers) in a piezo-
metric head time series, (2) draw the spatial pattern of the
amount of each contribution in piezometric head variation,

Figure 16. Superposition of measured piezometric head not used for analysis and reconstructed time
series. Nash criterion is 0.7. Note the capacity of the method to interpolate time gaps.

Table 2. Correlation Coefficient Between the Eigenvectors of the

First Study With 195 Observation Wells and the Experiments With

75% of the Observation Wells and Experiments With 25% of the

Observation Wells

Eigenvector 75% Observation Wells 25% Observation Wells

1 99% 97%
2 99% 95%
3 99% 90%
4 95% 85%
5 95% 65%
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(3) reconstruct piezometric heads anywhere within the
aquifer in the time span considered in the study, and (4) draw
smoothed piezometric surfaces representing only sound
global behavior.
[62] Finally, this method can be seen as a starting point

for other problems since major hydrological processes have
been quantified via the separation of source signals. Another
interesting property of this mathematical decomposition is
the separation of space and time that helps in other math-
ematical mixings, such as convolution in order to calculate
the geodetic effects of mass variation in the aquifer.
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