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a b s t r a c t

The Free Core Nutation (FCN) is investigated with the help of its resonance effect on the tidal ampli-
tudes in Superconducting Gravimeter (SG) records of the GGP network. The FCN resonance parameters
are combined in a resonance equation involving the Earth’s interior parameters. The sensitivity of the
FCN parameters to the diurnal tidal waves demonstrates that the quality factor of the FCN is strongly
dependent on the accuracy of the imaginary part estimates of the gravimetric factors close to the reso-
nance. The weak amplitude of � 1 tidal wave on the Earth, which is the closest in frequency to the FCN,

in addition to errors in ocean loading correction, explains the poor determination of the quality factor Q
from surface gravimetric data. The inversion of tidal gravimetric factors leads to estimates of the period,
Q and resonance strength of the FCN. We show that, by inverting log(Q) instead of Q, the results using
the least-squares method optimized using the Levenberg–Marquardt algorithm are in agreement with
the Bayesian probabilistic results and agree with the results obtained from VLBI nutation data. Finally, a
combined inversion of 7 GGP European SG data is performed giving T = 428 ± 3 days and 7762 < Q < 31,989

al est
(90% C.I.). An experiment

. Introduction

Because of the fluidity of the core, the Earth has a rotational
ode, called the Free Core Nutation (FCN) with a period almost

iurnal in Earth-fixed coordinates. The FCN parameters (period,
amping) strongly depend on the coupling mechanism at the
ore–mantle boundary (flattening, topography, electro-magnetic
oupling. . .). The FCN can be detected by its effect on the Earth’s
otation, using the VLBI network analyses, or by studying its effects
n the gravity field. As the tidal potential contains some diurnal
omponents, a resonance occurs in the diurnal frequency band.
his resonance effect can be observed in time-varying gravity data
ontinuously recorded on the Earth’s surface by Superconducting
ravimeters (SGs) of the Global Geodynamics Project (GGP) net-
ork (Crossley et al., 1999). The FCN resonance in gravity data is
ommonly represented by a damped harmonic oscillator model
hat we invert in order to determine the FCN frequency, quality
actor Q and the transfer function of the mantle (or the resonance
trength). The usual approach to solve this non-linear inverse prob-

∗ Corresponding author. Fax: +33 03 90 24 02 91.
E-mail address: Severine.Rosat@eost.u-strasbg.fr (S. Rosat).

264-3707/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jog.2009.09.027
imate of the internal pressure Love number is also proposed.
© 2009 Elsevier Ltd. All rights reserved.

lem is to use a linearized least-squares method optimized based on
the Levenberg–Marquardt algorithm (Marquardt, 1963 – Numer-
ical Recipes Fortran Chapter 15.5 – see for instance Defraigne et
al., 1994, 1995; Sato et al., 2004; Ducarme et al., 2007). However
Florsch and Hinderer (2000) have demonstrated the inadequacy of
using such a least-squares method, because the statistical distribu-
tion of Q is definitely not Gaussian. They have proposed instead the
use of a Bayesian approach to invert the FCN parameters, since the
Bayesian method better propagates the information to the param-
eters.

Neuberg et al. (1987) first proposed an inversion of stacked
gravity tide measurements in central Europe to retrieve the
FCN parameters using the Marquardt optimized linearized least-
squares. Then Defraigne et al. (1994) extended the gravity stack
to the nutation observations. In those past studies, the obtained
Q-value was abnormally small and sometimes even negative. Sato
et al. (2004) used 1/Q instead of Q as a parameter to be inverted
using a modified Marquardt least-squares method since 1/Q seems

to be Gaussian (Sato et al., 1994). However they obtained a Q-value
still smaller than the one retrieved from the VLBI nutation analysis
(Table 1). The first application of the Bayesian method was pro-
posed by Florsch and Hinderer (2000), who introduced log(Q) as a
parameter instead of Q, in order to preserve the positivity of Q, and

http://www.sciencedirect.com/science/journal/02643707
http://www.elsevier.com/locate/jog
mailto:Severine.Rosat@eost.u-strasbg.fr
dx.doi.org/10.1016/j.jog.2009.09.027
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Table 1
A summary of various estimates of period and quality factor of the FCN. In addition to theoretical results relative to an elastic Earth, to a slightly inelastic one and to MHB2000
model of Mathews et al. (2002), we have added experimental results from the IDA (International Digital Accelerometers) network of spring gravimeters and from VLBI (Very
Long Baseline Interferometry). The other results are from superconducting gravimeter (SG) datasets: B, Brussel (Belgium); BH, Bad-Homburg (Germany); ST, Strasbourg
(France); CA, Cantley (Canada); J, 3 Japanese stations; ES, Esashi (Japan); MA, Matsushiro (Japan); CB, Canberra (Australia); MB, Membach (Belgium).

Author Data T Q

Neuberg et al. (1987) Stacked gravity (B + BH) 431 ± 6 2800 ± 500
Sasao et al. (1980) Theory elastic 465 ∝
Wahr and Bergen (1986) Theory anelastic 474 78,000
Herring et al. (1986) VLBI 435 ± 1 22,000–105

Cummins and Wahr (1993) Stacked gravity IDA 428 ± 12 3300–37,000
Sato et al. (1994) Stacked gravity J 437 ± 15 3200–∝
Defraigne et al. (1994) Stacked gravity 424 ± 14 2300–8300

VLBI 432 ± 4 Q > 15,000
Stacked gravity + VLBI 433 ± 3 Q > 17,000

Florsch et al. (1994) Gravity ST 431 ± 1 1700–2500
Merriam (1994) Gravity CA 430 ± 4 5500–10,000
Hinderer et al. (1995) Stacked gravity (ST + CA) 429 ± 8 7700–∝
Roosbeek et al. (1999) VLBI 431–434 –
Florsch and Hinderer (2000) Gravity ST (Bayes) 428 Q > 20,000
Hinderer et al. (2000) Gravity + VLBI 431–434 15,000–30,000
Mathews et al. (2002) MHB2000 model 430.20 ± 0.28 20,000
Sato et al. (2004) Stacked gravity (ES + MA + CB + MB) 429.7 ± 1.4 9350–10,835
Vondràk and Ron (2006) VLBI 430.32 ± 0.07 20,600 ± 340
Ducarme et al. (2007) Mean gravity 429.7 ± 2.4 Not estimated
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Lambert and Dehant (2007) VLBI
Ducarme et al. (2009) Mean gravity in Europe
Koot et al. (2008) VLBI (Bayes)
This paper Stacked gravity of 7 European S

btained a Q-value greater than 20,000. More recently, Ducarme et
l. (2009) inverted log(Q) using both a Bayesian and a least-squares
pproach but applied on averaged gravimetric factors from Euro-
ean sites. They obtained a value for Q consistent with the VLBI
esult. The other studies based on the least-squares method are
ummarized in Table 1. Note that Koot et al. (2008) performed an
stimation of the FCN resonance parameters from VLBI nutation
eries using a Bayesian statistical approach in the time domain.

Here we propose a comparison of the results given
y the linearized least-squares method optimized by the
evenberg–Marquardt algorithm with the Bayesian inversion
pplied on SG gravity records. We show that the Q-value obtained
rom SG data is now in agreement with the value inverted from
LBI nutation series whatever the method used, least-squares
r Bayesian inversion. Besides, we demonstrate that the poor
onstraint on the Q-value obtained by Florsch and Hinderer (2000)
as due to the large uncertainty on the phase of the diurnal tidal
aves close to the resonance.

In the first part we describe the FCN resonance model.
hen, we review the theory of the Bayesian method and the
evenberg–Marquardt optimization algorithm applied to lin-
arized least-squares. A qualitative study is then performed to
heck the sensitivity of the gravity factors to the FCN parameters.
inally, we invert the FCN resonance parameters using a combina-
ion of 7 European SG time-series.

. The FCN resonance model

The basic equation used to describe the resonance of the FCN in
he tidal gravity is usually written as (Hinderer et al., 1991a):

˜
j = ı̃ref + ã

�j − �̃nd
, (1)
here ı̃j corresponds to the complex gravimetric factor observed
or every tidal wave of frequency �j, �̃nd = �R

nd
+ i�I

nd
is the com-

lex eigenfrequency of the FCN, ã = aR + iaI refers to the resonance
trength corresponding to the response of the whole Earth to the
CN. The quantity ı̃ref is the value of the gravimetric factor without
430 ± 0.4 17,000 ± 3000
430 ± 2 15,000 ± 8000

430 13,750 ± 514
yes) 428 ± 3 7762 < Q < 31,989 (90% C.I.)

any resonance process (classical tidal gravimetric factor); it is also
the asymptotic value of ı̃j for frequencies far away from the reso-
nance frequency. The eigenperiod T of the FCN expressed in sidereal
days in the rotating frame is related to �R

nd
by

T = 2�
�R
nd

,

where �R
nd

is expressed in radian per sidereal day. In the inertial
reference frame, the period can be written:

T ′ = 1
�R
nd
C − 1

where C = 86,164/15 × 86,400 and �R
nd

is given in degrees/solar
hour. The quality factor Q, expressing the damping due to all
the physical processes involved in the resonance, is defined as
Q = �R

nd
/2�I

nd
. The quantities �R

nd
and �I

nd
are positive by defini-

tion, therefore they should follow a log-normal distribution law
(Tarantola, 2005; Florsch and Hinderer, 2000) to avoid possible neg-
ative values. It is therefore recommended to include the a priori
positivity of Q in the model by changing the variable Q = 10x and
inverting for x, instead of Q.

Florsch and Hinderer (2000) performed the inversion by treating
ı̃ref as an unknown and showed that a correlation exists between
the real parts ıR

ref
and �R

nd
, and between aR and ıR

ref
, but the correla-

tion between aR and T is much stronger. As ı̃ref has a weak influence
on the values of T and Q, we do not include this parameter in the
inversion process. In previous studies (e.g. Defraigne et al., 1994,
1995; Ducarme et al., 2007), the observed value for the tidal wave
O1 was used as the reference gravimetric factor. In our case we will
use the mean value of the theoretical inelastic amplitude factors
of the O1 and OO1 waves computed for the Wahr–Dehant model
(Wahr, 1974; Dehant, 1987). By doing so, we suppose that the scale

factors of the SG used here are accurate enough, which is usually
true (better than 0.3% accuracy, e.g. Amalvict et al., 2001; Sato et al.,
2004). We could also have normalized by the observed O1 ampli-
tude as done by Sato et al. (2004) but we suppose that the scaling
error is negligible with respect to the ocean loading uncertainty.
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The equations relative to the resonance model are written:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ıR
j

= ıref + aR(�j − �Rnd) − aI((�R
nd

10−x)/2)

(�j − �Rnd)
2 + ((�R

nd
10−x)/2)

2

ıI
j
= ((aR�R

nd
10−x)/2) + aI(�j − �Rnd)

(�j − �Rnd)
2 + ((�R

nd
10−x)/2)

2

with ıref =
ıRO1

+ ıROO1

2
. (2)

Eq. (2) will be our formulation for the resonance model.
Hinderer (1986), Hinderer and Legros (1989), Defraigne (1992)

nd Legros et al. (1993) have written the analytical expression for
he resonance strength as a function of the Earth’s interior param-
ters:

˜ = −ı̃2
A

Am
e

(
�

(
1 − A

Af

�

e

)
− Am
A
�̃ ′
nd

)
− ı̃1

A

Am
e˝
(

1 − �

e

)
(3)

here � is a compliance (Mathews et al., 2002) related to the
eodetic parameter q0 (ratio of centrifugal acceleration to gravi-
ational acceleration) and the Love number hf by � = (q0/2)hf. ı̃1 is
he pressure Love number that represents the gravity response to
he pressure potential acting at the CMB (Hinderer et al., 1991a).
is the dynamic ellipticity of the Earth, ˝ its rotation rate and

/Am is the ratio of Earth to mantle moments of inertia. �̃ ′
nd

=
˝(A/Am)(ef − ˇ) is the FCN frequency in the inertial reference

rame (�̃ ′
nd

= �̃nd +˝), ef is the dynamical flattening of the CMB

nd ˇ the compliance defined by ˇ = (q0/2)hf1. hf1 is the displace-
ent Love number at the CMB associated with the fluid pressure

n the mantle caused by the relative rotation.
Legros et al. (1993) also considered the effect of the inner core

ncluding the Free Inner Core Nutation (FICN) resonance effect. We
eglect it here as the effect would be too small to be seen in SG
ecords.

In the following, we will estimate the period T, the quality factor
, as well as the real and imaginary parts of the resonance strength ã
sing two methods: a probabilistic approach based on the Bayesian

nversion and the more classical linearized least-squares optimized
sing the Levenberg–Marquardt algorithm.

. A review of the methods

.1. The Bayesian approach

The Bayesian inversion consists in propagating the informa-
ion (or knowledge) provided by the measurements through an
ssumed physical model (perfectly or probabilistically known) to
he parameters and to include the a priori knowledge of the model
arameters. Both the data and the model parameters are described
ith probability distributions. The Bayesian approach preserves the

ull knowledge provided by the data combined with the physical
aw and the a priori information on the data and model parameters.
herefore, it is the most suitable method to perform the inver-
ion of non-linear problems (Tarantola and Valette, 1982a,b). For
ore details about the Bayesian method, please refer to Florsch

nd Hinderer (2000).
The Bayesian probability distribution of the parameter vector �

s given by

p(�) = p(x, �Rnd, a
R, aI) = k exp⎧⎨ ∑⎡(

Re(ıth) − Re(ı )
)2 (

Im(ıth) − Im(ı )
)2
⎤⎫⎬
⎩−1
2

j

⎣ j j

�Re(ıj)
+ j j

�Im(ıj)
⎦⎭ , (4)

here k is a normalization factor in order that the integral of this
quation is unity, Re denotes the real part and Im the imaginary
amics 48 (2009) 331–339 333

part, ıj holds for the jth measurement value of the gravimetric
factor, th refers to the theoretical value, and �ı is the error on ı
(standard deviation).

The previous formula gives the general probability laws for the
parameter vector �. In order to obtain the law for one or two
parameters, we compute the marginal pdfs by integration of the
probability function over selected parameters. For instance, the
joint pdf integrated with respect to �R

nd
is defined by

px,aR,aI (x, a
R, aI) =

∫
p(x, �Rnd, a

R, aI)d�Rnd.

Notice that when integrating over selected parameters, we limit a
priori the space parameter on a finite domain. Two further integra-
tions of the pdf lead to the marginal probability law for each of the
parameters.

3.2. The linearized least-squares approach

As for the Bayesian method, the linearized least-squares
approach is a subset of the non-linear least-squares generalized by
Tarantola and Valette (1982b). The only difference is how to treat
a priori information, and what pdfs are involved. The least-squares
method is based on the determination of the best-fit parameters by
minimizing the merit function:

�2 =
∑
j

|ı̃j − (ıref + (ã/(�j − �̃nd)))|2

(�ı̃j)
2

(5)

However, when the model is non-linear, the minimization must
proceed iteratively given initial values for the parameters. The
procedure finishes when �2 stops decreasing. The �2 function is
linearized to a quadratic form depending on the Hessian matrix for
the inverse-Hessian method or the gradient of �2 for the steepest
descent method. The Levenberg–Marquardt (also called Marquardt
method; Marquardt, 1963) algorithm is in fact a smooth variant
between these two methods. The Marquardt method works very
well in practice and has become a standard of non-linear least-
squares routines. It has been widely used in previous FCN retrieval
studies like in Neuberg et al. (1987), Richter and Zürn (1986), Zürn
and Rydelek (1991), and Defraigne et al. (1994, 1995). We refer
to the Numerical Recipes (Press et al., 1992) Chapter 15.5 for the
optimization subroutines.

The set of linear equations
∑
j

˛kj��j = ˇk is solved for the

increments ��j that, added to the current trial parameters,
gives the next approximation. The matrix ˛ is called the curva-
ture matrix and is equal to one-half times the Hessian matrix:
˛kj = (1/2)((∂2�2)/(∂ak∂aj)) and ˇk = −(1/2)(∂�2/∂ak), where ak (or
aj) corresponds to one parameter. In the Marquardt optimiza-
tion algorithm, the increments are related to the curvature matrix
through a “damping factor” 
 as ��j = (1/(
˛jj))ˇj. When 
 is very
large, the diagonal of the curvature matrix is dominant and the solu-
tion tends to the initial parameters (the increments tend towards
zero). On the other hand, as 
 approaches zero, the increments
become very large and we may have a divergence problem. The
damping factor 
 is also known as the Marquardt factor. The
damping factor effectively constrains the range of values that the
increments��j can take.
The model used for the inversion is described by Eq. (2). In order
to impose the positivity of the quality factor Q, we perform the
change of variable x = log10(Q), as for the Bayesian approach, then
we minimize Eq. (5). We also estimate the damping factor 
, which
best minimizes �2.
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. Sensitivity and correlations between the FCN parameters

In order to check the sensitivity of the diurnal tidal wave
mplitudes to the FCN parameters, we perform some quali-
ative studies of the resonance transfer function presented in
q. (2) and based on the previously estimated values. We
ave �R

nd
∼= 7.30910−5 rad/s, Q ≈ 2 × 104 (based on VLBI results,

.g. Mathews et al., 2002), aR ≈ 3.4 × 10−9 rad/s ≈ 7 × 10−4◦/h and
I ≈ 2 × 10−10 rad/s ≈ 4 × 10−5 ◦/h (e.g. Hinderer et al., 1991b;
lorsch and Hinderer, 2000; see next section).

From Eq. (2) and with these values, for any diurnal waves of
ngular frequency �j, we can see that the quantity aI(�R

nd
/2Q ) is

egligible with respect to aR(�j − �Rnd) and (�R
nd
/2Q )

2 � (�j − �Rnd)
2
,

ence the amplitude gravimetric factor can be approximated by

ıR
j

≈ ıref + aR

�j − �Rnd

ıI
j
≈ ((aR�R

nd
10−x)/2) + aI(�j − �Rnd)

(�j − �Rnd)
2

(6)

For diurnal waves situated far from the resonance, i.e. for
�j − �Rnd) 	 3 × 10−8 rad/s, we have ıI

j
≈ aI/(�j − �Rnd). Therefore,

he FCN quality factor is only constrained by the imaginary part of
he gravimetric factor of the diurnal waves close to the resonance
K1, �1 and ˚1) and from Eq. (6) we can see that the imaginary
art of the resonance strength is mainly constrained by the imagi-
ary part of the gravimetric factors. However, the imaginary parts
f the tidal gravity factors are poorly determined, especially for
1 and ˚1 that have small amplitudes (particularly a small imag-

nary part) and are therefore very sensitive to the ocean loading
orrection error (Sato et al., 2004). We have tested the influence
f the error of the imaginary part of the gravimetric factors on the
esulting pdfs of the Bayesian inversion. For that, we have con-
idered synthetic gravimetric factors computed from Eq. (2) with
= 4, T = 430 days, aR = 6 × 10−4◦/h and aI = −5 × 10−5◦/h. Then we
ssume an error of 0.1% on the real part of the gravimetric factors
or nine diurnal waves (from Q1 to OO1 waves). We increase the rel-
tive error on the imaginary part from 1% to 100%, and we also test
he case when the error on ıI(�1) and ıI(˚1) becomes larger than
heir values themselves (relative uncertainty larger than 100%). The
orresponding pdfs are plotted in Fig. 1. When the relative error
n the imaginary part of ˚1 and �1 reaches 100%, the pdf for x
egins to be non-Gaussian and tends to an asymmetric probabil-

ty law (Fig. 1(b)). If we still increase the relative error on ıI(�1)
nd ıI(˚1) to 200% (Fig. 1(c)) or increase the error for all the waves
o 100% (Fig. 1(e)), then the probability law for x is definitely not
aussian any more and tends to the infinity towards larger values.
or a relative error of 50%, the pdf for x can still be approximated by
Gaussian law (Fig. 1(d)). In a previous paper, Florsch and Hinderer

2000) obtained a probability law for x that tends to infinity: that is
ecause of the large errors they had on the imaginary parts of the
mallest diurnal waves (�1 and˚1). As a consequence, if the esti-
ations of the gravimetric factors were more accurate (i.e. with

elative errors smaller than 50%), then the probability law for x
hould be Gaussian. Moreover, using VLBI nutation data, for which
he amplitudes of the equivalent˚1 and�1 nutations are high and
ell-determined, Rosat and Lambert (2009) have indeed obtained
Gaussian law for x.

We can also check the influence of the precision on the esti-
ated �1 gravimetric factor on the FCN resonance parameters.

e use the generalized non-linear least-squares formulation of

arantola and Valette (1982b) and we make the �1 gravimet-
ic factors varying around its observed value at Strasbourg (ı̃ 1

=
.2684 ± 0.004 + i0.0063 ± 0.004) with a range defined by twice
he observed standard deviation. Note that the std (ı̃ 1

) = 0.004
amics 48 (2009) 331–339

value attributed as an error on both the real and imaginary parts of
ı̃ 1

does not take into account the ocean loading correction error as
it must reflect the minimal error that we have on the determination
of the gravimetric factors at the site. The results of the least-squares
inversion lead to the conclusion that, with an error of 0.004 on the
real part of ı̃ 1

the a posteriori error on T from the least-squares
inversion is about 2.3 days. For x = log10(Q), the correlation with
ıI
�1

is much stronger and x varies between 4.2 and 4.6, correspond-

ing to Q-values between 15,849 and 39,811, when ıI
�1

ranges from
0.002 to 0.012. Therefore the uncertainty on the estimation of Q is
large even if the ocean loading correction was perfect. The error on
Q is therefore mostly due to the fitting error of �1 because of its
small amplitude. There is also a strong correlation between ıI

�1
and

aI. Similar computations could be done for K1 and˚1.
We have shown that the diurnal waves close to the resonance

are very sensitive to the FCN parameters. Besides, some correla-
tions exist between the FCN resonance parameters. As shown by
the tilted shapes in Fig. 1, two strong correlations exist between aR

and T, on the one hand, and between aI and x, on the other hand.
Physically it comes from the response of the whole Earth to the
FCN that depends also on the complex eigenfrequency of the core
oscillation. Indeed, the damping of the nearly diurnal free wob-
ble introduced through the complex eigenfrequency could be due
to the dissipation by viscomagnetic and topographic coupling at
the CMB and to the anelasticity (Mathews et al., 2002) while the
imaginary part introduced in the resonance strength, reflects the
anelasticity of the Earth which is related to the imaginary part of
the Love numbers. As a consequence, the Q-factor is physically cor-
related to the imaginary part of the resonance strength through the
anelasticity of the interface.

Florsch and Hinderer (2000) have also shown that the reference
gravimetric factor is correlated to aR and hence to the real part of
ı̃1. As we have an uncertainty (usually less than 0.3%) on the SG
scale factor, this error will be propagated to the estimation of ı̃1.
As we will see in the next part, this scaling error of 0.3% is smaller
than the uncertainty that we obtain for ı̃1.

The exploration performed by Florsch and Hinderer (2000) has
shown that the imaginary part of the strength aI is close to zero with
an error much larger than the value itself. They proposed to cancel
this parameter in order to restrict the scanning to a 3-parameter
space. However, aI is strongly correlated to Q particularly for Q-
values less than 1000: putting aI = 0 forces Q to be around 2600
(cf. Fig. 2(a)). Note that in this case (elastic model), the obtained T
value is close to 465 days, which is the value inferred by Sasao et
al. (1980) for an elastic Earth with a hydrostatic CMB flattening.

When imposing aI equal to a value close to the estimation from
the 4D inversion, i.e. aI = −5 × 10−5◦/h, then we obtain a most proba-
ble values for Q of 21,241 ± 6956 (cf. Fig. 2(b)) which is in agreement
with predictions of the MHB model (Mathews et al., 2002) and
with VLBI nutation observations (e.g. Lambert and Dehant, 2007;
Koot et al., 2008). In the next part, we will finally estimate the FCN
resonance parameters.

To conclude this part, we have seen that the FCN resonance
damping is strongly correlated to the anelasticity of the mantle
through the imaginary part of the internal Love number. The large
errors on the determined phases of the diurnal waves close to the
resonance make the parameter x follow a non-Gaussian probability
law.

5. Combined GGP inversion
Here we propose to analyze, in the spectral domain, 7 tidal
European SG observations to invert the FCN parameters. Contrary
to Ducarme et al. (2009), we do not compute averaged gravi-
metric factors but combine them by using relation (4) and we
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Fig. 1. Influence of the error of the imaginary part of the gravimetric factors on the resulting pdfs for aR , aI , x and T retrieved from the Bayesian analysis of synthetic data.
The error is expressed in percent of the gravimetric factor (imaginary part) amplitude. The relative error is (a) 10% for the 9 diurnal waves Q1, O1, M1, P1, K1, � 1, ˚1, J1 and
OO1; (b) 10% for the 7 waves Q1, O1, M1, P1, K1, J1, OO1 and 100% for � 1 and˚1; (c) 10% for Q1, O1, M1, P1, K1, J1, OO1 and 200% for � 1 and˚1; (d) 50% for Q1, O1, M1, P1, K1,
� 1,˚1, J1 and OO1; (e) 100% for Q1, O1, M1, P1, K1, � 1,˚1, J1 and OO1. The vertical dot lines indicate the values of x, T, aR and aI used to compute the synthetic delta-factors:
x = 4, T = 430 days, aR = 6 × 10−4◦/h and aI = −5 × 10−5◦/h.
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Fig. 1.
uppose that the resonance strength ã is the same for all the
ites. Because ã corresponds to the mantle response to the FCN,
upposing a homogeneous response at all SG sites enables to
etrieve the global parameters (cf. paragraph 2) like the inter-

ig. 2. Joint and marginal pdfs for the FCN parameters (aR , T and x) estimated from Str
I = −5 × 10−5◦/h. The Marquardt least-squares inversion results are also indicated as vert
nued ).
nal pressure Love number at the CMB. The weight in Eq. (4) is
the combination of the standard deviation of the fitted gravi-
metric factor by ETERNA software and of the ocean loading
error.

asbourg SG tidal gravity factors using the Bayesian method with (a) aI = 0◦/h; (b)
ical dotted lines.
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ig. 3. Joint and marginal pdfs for the FCN parameters (aR , aI , T and x) estimated from
ettzell) records using the Bayesian method. The Marquardt least-squares inversio

The SG sites considered here are Bad-Hambourg (H1, Germany),
oxa (M1, Germany), Membach (MB, Belgium), Medicina (MC,

taly), Strasbourg (ST, France), Vienna (VI, Austria) and Wettzell
W1, Germany). H1 (resp. M1, W1) refer to the lower sphere
f the double-sphere SG installed at these German sites. The
ecord length that has been used to retrieve the gravimetric fac-
ors from the ETERNA tidal analysis is larger than 5 years for
very time-series. These sites have been chosen because they
re relatively far from the ocean (except Membach) and their
Gs are known to be well calibrated (better than 0.3% accu-
acy).

The raw data have been corrected for gaps, spikes, steps and
ther disturbances so that a tidal analysis with ETERNA soft-
are (Wenzel, 1996) is possible. Before the tidal analysis, the
inute data are decimated to 1 h (using a filter with a cut-off

eriod of 3 h). The ETERNA software then performs a least-
quares fit to tides, local air pressure and instrumental drift to
etrieve the complex gravimetric factors, the residual gravity,
n adjusted barometric admittance, and a polynomial drift func-
ion.
The data to be inverted are the complex gravimetric factors
orrected for the ocean tide loading effect according to FES2004
cean model (Lyard et al., 2006, for ocean loading computation
ee for instance Llubes et al., 2008). We have attributed a nom-
nal error of 0.02 nm/s2 on the ocean loading correction vector.
king 7 European SG (Bad-Homburg, Moxa, Membach, Medicina, Strasbourg, Vienna,
lts are also indicated as vertical dotted lines.

This value has been roughly estimated based on the compari-
son between different ocean tide models. The inversion is carried
out for the four parameters (x, �R

nd
, aR, aI) on a 1014 points space.

The explored parameter space is defined based on the results by
Florsch and Hinderer (2000), namely x spans from 3 to 8, T varies
between 380 and 520 sidereal days, aR is ranging from 0.0004
to 0.001◦/h and aI varies between −10−4 and 10−4◦/h. Therefore
we have defined a priori locally uniform laws for these parame-
ters.

The pdfs obtained from the Bayesian estimation are plotted
in Fig. 3. The mean values of the FCN parameters com-
puted from the marginal probability laws are T = 428 ± 3 days,
aR = (0.667 ± 0.005) × 10−3◦/h and aI = (−0.492 ± 0.05) × 10−4◦/h.
The law for Q is not symmetric (and not Gaussian) so we define con-
fidence intervals: Q is between 7762 and 31,989 within 90% C.I. Note
the good agreement with the Levenberg–Marquardt least-squares
results represented by the vertical dotted lines.

Based on the MHB Earth’s parameter values and using Eq.
(3), this resonance strength estimate leads to an observed deter-
mination of the ı̃1 internal pressure gravimetric factor of ı̃1 =

−4
0.0306 − i0.00223 with an error of 2 × 10 . Theoretical values of
the rotational pressure gravimetric factor ı̃1 have been computed
by Dehant et al. (1993). A first experimental determination of ı̃1
has been proposed by Hinderer et al. (1991b) by stacking gravity
measurements. They have found ı̃1 ≈ 0.043 and they have esti-
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ated that the imaginary part of ı̃1 is 1.6% of the real part, i.e.
round 7 × 10−4. In our case ı̃I1 is about 7% of ı̃R1. From the FCN
requency, the combination of the dynamic flattening of the fluid
ore and the compliance (or the displacement Love number hf1)
an be evaluated from �̃ ′

nd
= −˝(A/Am)(ef − ˇ) (cf. Section 2). From

ur observed value, (ef −ˇ) ≈ 0.002 which is in agreement with the
HB values of ef = 2.6456 × 10−3 and ˇ = 6 × 10−4 (Mathews et al.,

002).

. Conclusion

The problem of negative Q-values encountered in previous stud-
es has been avoided using the logarithm of Q in the inversion
cheme.

We have solved the FCN resonance damping equation for four
arameters using on the one hand, the more traditional linearized

east-squares method optimized with the Levenberg–Marquardt
lgorithm, and on the other hand, a statistical Bayesian approach.
e have demonstrated the good agreement between both

esults.
Because of the correlation existing between the quality factor

and the imaginary part of the resonance strength aI, and the
ecessity for the mantle to possess some anelasticity, this latter
arameter cannot be neglected and must be considered in the

nversion scheme. Because of the large error on the phase of the
iurnal waves close to the resonance, the parameter x = log10(Q)
oes not follow a Gaussian law.

From stacking the SG tidal gravity data, we can improve the
etermination of the FCN resonance parameters, which are in
greement with VLBI nutation determination. In order to further
mprove these estimates, the ocean loading correction must be
mproved at these diurnal frequencies. The nutation has the advan-
age to be less affected by the ocean loading uncertainty as the
ontribution of the ocean to the Earth’s wobble is much smaller
han its effect (mainly local) on the surface gravity.

Time-varying gravity data appear to provide complementary
nformation to the VLBI nutation data as the latter cannot deter-

ine the precession while gravity can determine the K1 tidal wave.
esides, gravity observations enable to retrieve additional Earth’s

nterior parameters like the internal pressure Love numbers.
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