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ABSTRACT
The analysis of low-frequency spectral induced polarization data involves the determination of the 
distribution of relaxation times either from time-domain or frequency domain measurements. The 
classical approach is to assume a simple transfer function (e.g., a Cole-Cole function) and to deter-
mine, by a deterministic or a stochastic fitting procedure, the parameters of this transfer function 
(for instance the four Cole-Cole parameters). Some other methods (based on optimization) have 
been developed recently avoiding the choice of a specific transfer function that can bias data inter-
pretation. We have developed a new approach based on the Fourier transform also avoiding the use 
of a specific analytical transfer function. The use of the Fourier transform is a classical approach to 
retrieve the kernel of a Fredholm integral equation of the first kind (especially in potential field 
theory) and this corresponds exactly to the problem we want to solve. We adapt the Fourier trans-
form approach to retrieve the distribution of the relaxation times (for instance to process low-fre-
quency induced polarization data). Problems resulting from the use of this approach with noisy data 
are prevented by using Wiener filtering. As far as induced polarization is concerned, we found that 
it is necessary to fit the high-frequency dielectric contribution of the spectra and to remove this 
contribution from the quadrature conductivity data before inverting the distribution of the relaxation 
times. Our approach is benchmarked with analytical pair solutions and then tested by using syn-
thetic and experimental data sets.

determination and interpretation of the distribution of the relaxa-
tion times either from time-domain data (Tong et al. 2006a,b; 
Tarasov and Titov 2007) or from frequency domain data (Kemna 
2000; Ghorbani et al. 2007; Chen et al. 2008). The literature 
devoted to the determination of the distribution of relaxation 
times can be divided into two classes of methods depending on 
whether specific analytical transfer functions are used or not.

In the first class of methods, the distribution of relaxation 
times is supposed to be analytically known and its mathematical 
formula is explicitly given. Examples include the Debye distribu-
tion, the Cole-Cole distribution and the Cole-Davidson distribu-
tion among many other functions. Then the problem lies in the 
determination of the parameters involved in the analytical model 
using either deterministic or stochastic approaches (Kemna 
2000; Ghorbani et al. 2007; Chen et al. 2008 and references 
therein). In this case, the inverse problem consists in fitting the 
data to invert a few model parameters (e.g., three if the Debye 

INTRODUCTION
Induced polarization is a geophysical method sensitive to the 
reversible storage of electrical charges in porous media with a 
number of applications to the localization of ore bodies (Marshall 
and Madden 1959) and environmental problems including the 
study of contaminant plumes and bioremediation (Börner et al. 
1996; Kemna 2000; Binley et al. 2005), permeability imaging 
(Hördt et al. 2007) and salt tracer tests (Karaoulis et al. 2011). 
This (non-intrusive) geophysical method can be performed either 
in the time domain or in the frequency domain. In the frequency 
domain, it consists in measuring the resistivity and phase lag 
between the alternating current and the voltage response in a 
broad frequency range (typically from 1 mHz and 1 kHz or more 
recently 12 or 20 kHz thanks to fibre optic-based systems). The 
interpretation of induced polarization measurements involves the 
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efficient to retrieve induced polarization parameters than the 
frequency domain polarization (SIP) method (see Ghorbani et 
al. 2007 for a discussion), Tarasov and Titov (2007) obtained 
impressive and meaningful results for saturated sands. Tong et 
al. (2006a,b) also obtained very good results in inverting time-
domain IP data using the Singular Value Decomposition 
(SVD) method and used their results to infer the permeability 
of sandstones.

In the present paper, we develop a new and simple approach 
based on the Fourier transform. It requires no prior information 
regarding the structure of the distribution of relaxation times. 
Despite the fact that the method developed below has been sug-
gested very early in the induced polarization literature (for 
instance by Fuoss and Kirkwood 1941), to the best of our knowl-
edge, it has never been actually developed and used.

FORMULATION OF THE PROBLEM
We consider below the case of frequency domain IP data. When 
considering a box-representation of a linear system (in the fre-
quency domain) with an input signal X(ω) and an output signal 
Y(ω), the transfer function of the system (corresponding to the 
complex-valued impedance in our case) can be written, with an 
additional additive constant for more generality, as:

Y(ω) = Zω(ω) X(ω)� (1)

� (2)

where ω is the angular frequency, τ a (real) relaxation time (in s) 
and a and b are two real (or possibly complex) constants. If Z 
corresponds to the impedance, then a and b are expressed in 
Ohm (Ω). As far as electromagnetic signals are concerned, this 
model is usually named the Debye’s model in honour of the 
physicist Peter J.W. Debye (Debye and Falkenhagen 1928; 
Strauss 1954). Equation (2) is also used to treat some rheological 
problems (it is called the Maxwell model in fluid dynamics in the 
case of simple viscoelastic media) or any (linear) phenomenon 
where a basic relaxation occurs described by a single relaxation 
time. The Debye model also plays an important role in the study 
of dielectrics (Jonscher 1983, 1999). In this case, the effective 
dielectric constant e* is written as:

�  (3)

or alternatively

� (4)

where i2 = -1 (i represents the pure imaginary number) and ε0 and 
ε∞ represent the asymptotic dielectric constants at zero and infi-
nite frequency, respectively. In geophysics, the Debye model has 
been used to fit the (low-frequency) Induced Polarization (IP) 
response of porous rocks for which the polarization effect is usu-

function is adopted and four for the Cole-Cole function). The 
most used analytical model to interpret spectral induced polari-
zation data remains the Cole-Cole model (Cole and Cole 1941; 
see Ghorbani et al. 2007 for a Bayesian analysis of this function 
both in time and frequency domains). A number of authors have 
also used models based on modifications of the Cole-Cole model 
like the double Cole-Cole model (Chen et al. 2008; Ghorbani et 
al. 2009) and the generalized Cole-Cole model (Davidson and 
Cole 1950; Vanhala 1997; Pelton et al. 1983; Ghorbani et al. 
2009). There are many other models that have been proposed in 
the literature. For instance, Dias (2000) discussed 12 analytical 
functions in the frequency domain while Yeung and Shin (1991) 
proposed 13 analytical functions in the time domain. The paper 
by Macdonald and Brachman (1956) mentioned 21 analytical 
functions. These authors provided both the transfer functions and 
the time functions and their associated (normalized) distributions 
of relaxation times gτ(τ). However, most of these models are not 
suitable to interpret the geophysical response of earth materials 
(curiously the Cole-Cole model is not cited by Macdonald and 
Brachman 1956). Such a high number of models is not satisfying 
even if some attempts have been made to propose more general 
models (e.g., Yeung and Shin 1991).

In our opinion, this abundance of analytical models results 
from the high number of ways the relaxation times can be distrib-
uted (scattered) over the investigated range of frequencies. It is 
also a consequence of trying to handle the mathematical repre-
sentation of the IP spectra as canonical as possible. For instance, 
the Cole-Cole model combines a rather simple distribution den-
sity (see equation (13) in Cole and Cole 1941) with a ‘simple’ 
generalization of Debye’s model using an exponent in its fre-
quency dependant term. Such a generalization is also broadly 
used to characterize the rheology of viscoelastic porous materials 
for the same reasons (see for instance Revil et al. 2006). As 
pointed out by Cole and Cole themselves, the so-called Cole-
Cole probability distribution for the relaxation times is not really 
different from a log-normal distribution (see equation (12) and 
Fig. 9 in Cole and Cole 1941). However, to the best of our knowl-
edge, the transfer function that would correspond to the log-
normal law for the distribution of relaxation times has never been 
described in the literature and, despite the efforts of many 
researchers (and ours too), remains analytically unreachable.

In the second class of methods, the distribution of relaxa-
tion times may be obtained without specifying any prior ana-
lytical functions. The method described in the present paper 
belongs to this second class of methods. We want to find the 
distribution of relaxation times using a discrete spectrum 
analysis. Recovering the distribution of relaxation times by 
using the inverse problem theory has already been described 
by several authors (Tong et al. 2006a,b; Tarasov and Titov 
2007; Nordsiek and Weller 2008; Zisser et al. 2010). In the 
time domain, the method proposed by Tarasov and Titov 
(2007) is based on Tikhonov regularized optimization. 
Although the time-domain induced polarization is much less 
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and Florsch (2010), the distribution of the time constants follows 
the distribution of the grain sizes themselves due to the relation-
ship between these two parameters expressed as (Schwarz 1962; 
Revil and Florsch 2010):

� (8)

where d is the grain diameter (in m) and D the coefficient of dif-
fusion of the counterions in the Stern layer in the case of the 
relaxation of the inner part of the electrical double layer. It may 
be possible however that the distribution of the relaxation times 
is related to the pore size distribution as suggested by various 
authors (Scott and Barker 2003; Kruschwitz et al. 2010). In their 
study of the induced polarization response of pyrite, Pelton et al. 
(1978) showed, using the experimental data of Grisseman 
(1971), that the time constant from IP data depends also on the 
square of the grain diameter of the pyrite grains (see his Fig. 6 
for which two decades in the distribution of the time constants fit 
linearly one decade in the mean grain size of the pyrite grains). 
In sedimentary rocks, the grain size and pore size distributions 
are often observed to follow a log-normal law or sometimes 
fractal behaviour over several scales. In both cases, the distribu-
tion of the time constants would follow a similar behaviour.

Considering that in real rock, the grain size probability den-
sity function is rarely distributed as a narrow peak but follows a 
broad distribution, the distribution of the relaxation times is 
expected to be broad (see discussion in Vinegar and Waxman 
1984; Lesmes and Morgan 2001; Revil and Florsch 2010). Even 
in the case where the interaction between the grains is taken into 
account (Cosenza et al. 2008; Zhdanov 2008; Tabbagh et al. 
2009), the superposition principle applies and can be used to 
establish the macroscopic response. In the present paper, we 
consider that the principle of superposition applies.

The time response (or ‘impulse response’) gτ(τ) associated 
with equation (3) is given by its inverse Laplace transform,

� (9)

This time function may be convoluted with the current to predict 
the (voltage) response of the medium in the time domain. For 
more details on time functions, the readers are directed to Yeung 
and Shin (1991).

We do not try in the next sections to account directly for the 
high-frequency dielectric term, which is analysed specifically in 
Appendix B. We consider therefore a set of measurements repre-
sented by the model:

� (10)

with k = 1,…, K, where K is the number of involved frequen-
cies. The goal of the present paper is to propose a general 
method to retrieve gτ(τ) from these data sampled in the fre-
quency domain.

ally non-dielectric in nature (Lesmes and Morgan 2001; Leroy et 
al. 2008; Revil and Florsch 2010; Vaudelet et al. 2011). For the 
Debye model, the complex resistivity can be written as,

� (5)

where m = (ρ0–ρ∞)/ρ0 (dimensionless,  0 ≤ m ≤ 1) denotes the 
chargeability of the material and ρ0 and ρ∞ represent the DC 
resistivity (ω = 0) and the resistivity at infinite frequency, respec-
tively. Usually the high-frequency resistivity can be difficult to 
evaluate, as discussed later, because of the superposition of the 
dielectric effect to the low-frequency (non-dielectric) IP effects 
(see Appendix A and B). Equation (5) corresponds to the same 
type of expression as equations (3) and (4).

In a linear porous material, the superposition principle 
applies. Under the assumption that spectral induced polarization 
can be explained by a linear model and a combination of linear 
contributions, the superposition of scattered time constants with 
a (normalized) density function gτ(τ) implies the following gen-
eralization:

� (6)

The constant a could be included in gτ(τ) but if gτ(τ) is assimi-
lated to a probability density function (the sum of the probabili-
ties is equal to 1), then we keep the amplitude term a outside the 
integral and assume that,

�  (7)

An example of an induced polarization model satisfying equa-
tion (6) is discussed in Appendix A. A discussion of the applica-
bility of the superposition principle in spectral induced polariza-
tion is also needed and very often such a discussion is missing in 
papers developing methods to reconstruct the distribution of 
relaxation times. In the theory developed recently by Revil and 
Florsch (2010), the superposition principle holds and the local 
governing equations are linear. More generally, available theo-
ries are based on linearization of the governing equations (see 
Fixman 1980; Dukhin and Shilov 2002 for some examples of 
first-order linearization of the governing equations in IP). 
Generally speaking, the IP problem can be non-linear (Olhoeft 
1985). Membrane polarization is an example of a non-linear IP 
contribution showing a non-linear relationship between the cur-
rent and the voltage because of the existence of a threshold cur-
rent (Urtenov et al. 2007). Olhoeft (1985) showed from labora-
tory data that some IP data are non-linear and characterized by 
harmonic distortions, especially at very low frequencies (below 
100 mHz). If the contribution to induced polarization is non-
linear (showing harmonic distortions), then the superposition 
principle does not hold and the present approach is not valid.

We now come back to the distribution of relaxation times and 
its physical meaning. In the theory developed recently by Revil 
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Taking the imaginary part of equation (13) and including the 
constant a into the integral yields:

�   (14)

The distribution H
s
 (s) = aG

s (s) is just the same as G
s (s) but not 

yet normalized. We should remember that G
s (s) is a (normalized) 

probability density distribution function with the property:

.� (15)

Note that constant a can only be determined at the end of the 
inversion process, once H

s
 (s) has first been obtained. Therefore 

we will use H
s
 (s) in the following analysis. Taking the Fourier 

Transform (FT) of equation (14) yields,

.� (16)

We use below the symbol ‘~’ to denote the Fourier Transform 
(FT). We use the frequency η in this Fourier space (this fre-
quency has nothing to do with the angular frequency ω), we then 
have the explicit relationship:

.� (17)

The Fourier transform of the hyperbolic secant function is given 
by:

.� (18)

From equations (17) and (18), we obtain,

.� (19)

Using a back Fourier transform, this yields the following expres-
sion for Hs (s):

� (20)

The inversion of the time distribution is known to be an ill-posed 
problem in Tikhonov’s sense and this is why regularization tech-
niques are required to solve the least-square inversion scheme 
(Tarasov and Titov 2007). This difficulty appears clearly when 
considering the equations derived above. Indeed, the spectrum of 
the data may contain some noise and hence the multiplication by 
the hyperbolic cosine function normally devoted to recover the 
initial information blows up the high-frequency content of the 
noisy data. The so-called Wiener deconvolution, an adaptation of 
the Wiener filtering approach (Wiener 1949), is a standard signal 
processing approach to avoid such an artefact in the frequency 
domain. It is equivalent to a damped least square solution (see 
Proakis and Manolakis 2007 for a demonstration).

USE OF THE FOURIER TRANSFORM THEORY
From a mathematical standpoint, equations (9) and (10) are 
called Fredholm integral equations of the first kind. If is known 
that for such type of equations, in the case of a convolutive ker-
nel, the kernel itself can be retrieved by using a Fourier transform 
approach (see for instance Polyanin and Manzhirov 1998). The 
transformation of equation (4) or equation (7) into a convolutive 
form is a classic approach in geophysics to solve potential field 
problems. We consider the arbitrary relaxation time τ0 and we 
use the following substitutions:

,� (10)

,� (11)

.� (12)

So z is exchanged with the angular frequency ω and the variable 
s replaces the relaxation time τ. We have to deal now with the 
following convolution,

.� (13)

Finding the distribution Gs (s) replaces the search for the func-
tion gτ(τ). Most of the literature emphasizes that making use of 
the imaginary (quadrature) component of the impedance only is 
sufficient to retrieve the time distribution and that the addi-
tional use of the real part is not useful because it is much less 
sensitive to the distribution of the relaxation times (see for 
instance Barsoukov and Macdonald 2005, p. 199). This princi-
ple could be derived from signal-to-noise ratio considerations. 
Indeed, the real part of the impedance (resistivity) involves the 
dominant constant b (e.g., given by the conductivity of the pore 
water divided by the formation factor in Appendix A in absence 
of surface conductivity) while the imaginary part does not 
involve any additive constant. In the model of Revil and 
Florsch (2010), the imaginary part of the conductivity is direct-
ly proportional to the frequency dependent surface conductivi-
ty. The constant b is generally much greater than the variation 
of the real part itself (see a recent example in Vaudelet et al. 
2011). Therefore, the presence of a relative random noise (e.g., 
taken constant over the whole spectrum) would correspond to a 
higher absolute error on the real part of the impedance. 
However, the previous reasoning may fail when considering 
homogeneous absolute errors in the data. Miranda and Rivera 
(2008) showed for instance how the real part can only be used 
to invert the Cole-Cole parameters. However, their approach 
has never been followed by geophysicists. Miranda and Rivera 
(2008) used the Kramers-Kronig relationships, which connect 
the real and imaginary parts of a linear causal system. Although 
we only discuss the imaginary part in this paper, our approach 
can therefore be adapted to the real part of the complex imped-
ance as well.
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can be normalized, which yields the function G
s (s) and the con-

stant a and then it is straightforward to retrieve the distribution 
of the relaxation times using equation (12).

It is frequent that  and  are difficult to 
estimate. In such a situation, an optimum W can be estimated 
by a procedure similar to the one used to estimate the damping 
parameter while performing a Tikhonov-like regularization of 
an inverse problem. A popular technique is the so-called 
L-curve approach. Agarwal (2003) provided an explicit defini-
tion of this approach: the “L-curve is a log-log plot between the 
squared norm of the regularized solution and the squared norm 
of the regularized residual for a range of values of regulariza-
tion parameters” (see also Hansen and O’Leary 1993). The 
advantage of this procedure is its simplicity but it drops a pos-
sible dependence of the variances with respect to η. Appendix 
C contains additional information about the L-curve approach 
and its use.

Instead of the equations above, the Wiener deconvolution (see 
a complete analysis in Appendix C) takes the form that replaces 

 by,

,� (21)

(taking into account the fact that the function ‘cosh’ is purely 
real) where  and  and 

 are the variances (or energy) of the ‘input’ and noise, 
respectively, both as a function of the frequency. The result is 
optimal in the Wiener sense and is finally given by:

� (22)

Some details on Wiener optimum deconvolution as applied here 
are discussed in Appendix C. Equation (22) is the main equation 
derived in our paper. Once the distribution Hs (s) is obtained, it 

TABLE 1

Time and frequency domain expres-

sions of some classical transfer func-

tions.

(1) Our solution. The solution of 

Matsumoto and Higasi (1962) seems to 

have a typo.

(2) From Barsoukov and MacDonald 

(2005, p. 37). Their equation (40) has a 

typo.

(3) From Barsoukov and MacDonald 

(2005, p. 40).

(4) It1, t2
 = [t1, t2]. We shall also use It1, t2 

for the corresponding index function. 

From Barsoukov and MacDonald 

(2005, p. 38, 39). Note that this func-

tion is not normalizable if it is not 

restricted to an upper and a lower limit 

of τ.

(5) From Williams and Watt (1970) 

with their a = 1/2.

(6) From Barsoukov and Macdonald 

(2005). Actually the correspondence 

between their equations (48) and (52) 

seems to have an error.



N. Florsch, C. Camerlynck and A. Revil522

© 2012 European Association of Geoscientists & Engineers, Near Surface Geophysics, 2012, 10, 517-531

We use here the following values a = 0.3, τ0 = 0.1, τ1 = 0.1, and 
τ2 = 10. The respective distribution of time constants (DTC) is 
known to be (Fuoss and Kirkwood 1941; Cole and Cole 1941, 
see Table 1):

�   (29)

We use the notation γτ(τ) instead of gτ(τ) because this function is 
not normalized. We compute numerically the transfer function 
on a set of realistic frequency values {wk, k = 1,...,K}, where K is 
the total number of discrete frequencies. We therefore obtained a 
synthetic data set to which we added a synthetic noise vk simulat-
ing some experimental uncertainties. We take here Gaussian 
noise with a standard deviation on the quadrature contribution of 
5·10-4. Therefore, we consider the contaminated synthetic ‘simu-
lated’ data:

�  (30)

where vk corresponds to the noise. One difficulty lies on the 
choice of the frequency interval to be used to perform the calcu-
lation in the spectral domain. For this example, we choose first a 

TESTS USING SOME ANALYTICAL FUNCTIONS
Some pairs of analytical transfer functions and their associated 
time constant distributions are used to test the proposed method. 
They are given in Table 1. Note that the frequency response rela-
tive to the very important log-normal distribution remains unsolved 
analytically despite the effort of various researchers (John 
Stockwell, personal communication, 2011). However, using the 
change of variables into the log of the log-normal distribution, the 
numerical integration of log-normal distribution is possible.

The case of the Debye model: a tautological check
We first test our approach to the most straightforward case cor
responding to the Debye distribution. This is to test the self-
consistency of our approach in this elementary case. In the 
Debye case, the distribution of the relaxation times (with τ0 > 0) 
is given by,

gτ(τ) = δ(τ-τ0),� (23)

from which we obtain,

�   (24)

Then, the imaginary part of the transfer function becomes:

� (25)

The Fourier transform of this quantity is 1/cosh, hence:

� (26)

We apply equation (20) in order to determine Gs(s) . This yields

� (27)

as expected.

Test on a synthetic example
For this synthetic example, we use a weighted combination of 
Cole-Cole (weight = 1) and 1/τ (weight = 0.2) distributions 
(cases 2 and 5 from Table 1). The related transfer function 
(imaginary part only) is therefore given by:

�   (28)

FIGURE 1

L-curves relative to the combined noisy synthetic model, which involves 

the sum of a Cole-Cole curve with parameters (t0 = 0.1; a = 0.3 ⇔ c = 0.7) 

and a 1/τ model within the interval t ∈ [0.1;10]s. Two L-curves are shown, 

related to two frequency ranges, a wide one, which is within [10-8, 108] Hz 

(dotted line) and a ‘SIP-FUCHS’ range that is [10-3, 1.2×104] Hertz (con-

tinuous line). The L-curves can be decomposed into three parts: on the 

left, the fit may be good in the space data but the solution in the param-

eter space is divergent; on the right, the smoothing is too strong and 

flattens the solution to zero; the satisfactory solution will be found at the 

left corner, still in the horizontal part of the curve, as shown. See also 

Figs 2 and 3 for the inversion of the relaxation time distribution and the 

corresponding reconstruction of the quadrature (imaginary) resistivity.
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recovered distribution while the continuous line is the target 
model relative to equation (29). In these cases, the solutions are 
not satisfactory. Figure 3 shows the case when the damping fac-
tor is well chosen. Then the synthetic data and the ‘recomputed’ 
data match very well and the solution is stable and close to the 
targeted model. Precisely, the recomputed data are calculated by 
using the direct calculation, which is, by re-filtering the solution 
through the low-pass 1/cosh function. This is:

� (32)

The recomputed data are shown with dotted lines while the con-
tinuous curves are relative to the synthetic data. Figure 2 (a,b) 
emphasizes the fact that a good fit of data can be reached while the 
inverted solution is quite wrong and this illustrates very well the 
difficulties encountered in this inverse problem (as many others in 
geophysics). On the other hand, Fig. 2(c,d) shows the results if W 
is taken much above the critical value at the corner of the L-curve. 
In this case, both the target and inverted results are flattened. The 
information is lost because the denominator in equation (22) 
becomes too large. The results are oversmoothed (all these results 
are relative to the SIP-FUCHS frequency range discussed above).

The central flattening of the L-curve (where the result of the 
inversion is satisfactory) results from the fact that the norm of the 
solution is not varying while W varies. As explained in Appendix 

very broad (and idealistic) range, [10-8, 10+8] Hz and then we also 
deal with a more restricted range that is the one used by SIP-
FUCHS II impedance meter, [10-3, 1.2x104] Hz (Cosenza et al. 
2007; Radic-Research 2008). These two frequency ranges will 
be denoted as the ‘broad’ and ‘SIP-FUCHS’ ranges, respectively. 
Figure 1 displays the L-curves showing the classical three dis-
tinctive parts: one where the solution diverges, one where the 
solution is too flattened and the part where the solution is opti-
mal. The L-curve is computed by forming the data misfit 
term R(z) defined by,

� (31)

The L-curve is precisely the plot of  versus the 
data misfit term R2(z). The inverted distributions are plotted with 
the target models. We plotted the L-curve in both wide and nar-
row (SIP-FUCHS-II) frequency ranges. It is remarkable that the 
general shape (which is consistent with the expected ‘L-shape’) 
depends hardly on the operating frequency range. Moreover the 
best Wiener damping coefficient seems not to depend on the 
range of frequencies. From the L-curve, the suitable value of the 
damping parameter is W = 0.001 for this synthetic example.

Figure 2 shows what happens if the W damping factor is too 
small (see cases (a) and (b), with W = 10-8) or too strong (see 
cases (c) and (d), with W = 10). The dotted line denotes the 

FIGURE 2

The solution in the synthetic (but 

noisy) case is presented in two 

unfavourable cases. The model is 

the one shown in Fig. 1 and 

involves the sum of a Cole-Cole 

curve with parameters 

(t0 = 0.1; a = 0.3 ⇔ c = 0.7) and a 

1/τ model within the interval 

t ∈ [0.1;10]s. The model is shown 

by a continuous line while the 

inverted solution is in the dotted 

line. All the spectra are multiplied 

by τ to facilitate the visualization 

and only the ‘SIP-FUCHS’ range 

case is shown. Figures (a) and (b) 

are relative to the unfavourable 

case where the value of W is too 

small with respect to the optimal 

value. This yields an unstable 

solution. On the other hand, the 

cases (c) and (d) are relative to a 

choice of a value of W chosen that 

is too high with respect to the 

optimal value. In this case, the 

solution is flattened to almost 

zero.
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be applied on any function, actual application may be performed 
separately on spectral resistivity or conductivity. Many recent 
works have connected the spectral conductivity to some textural 
properties of porous media such as the grain size distribution 
(e.g., Revil and Florsch 2010) or the pore size distribution (Revil 
et al. in press in Water Resources Research 2011), which should 
obviously lead to the retrieval of the gτ (τ) distribution based on 
spectral conductivity for direct comparison. However, following 
Pelton et al. (1978), the polarization phenomena are most of the 
time explicitly described by the resistivity relaxation phenomena 
through various models (e.g., Dias 2000; Table 1). Hence, Cole-
Cole parameters are more often determined on spectral resistiv-
ity and it is usually the so-called resistivity Cole-Cole relaxation 
time that is for instance directly compared to textural parameters 
(e.g., Binley et al. 2005; Koch et al. 2011). Using a Cole-Cole 
distribution for the relaxation time, the Debye model given by 
Eq. (5) can be generalized to,

� (33)

and the associated complex conductivity  is then described by a 
Cole-Cole distribution model: 

� (34)

C, the left part of the curve is relative to the divergence of the 
solution: its norm blows up more or less randomly (in other 
words, it is unstable). The right part of the L-curve would cor-
respond to a solution that is oversmoothed. The solution is flat-
tened and tends to zero, which is why the norm of the residual is 
constant but not zero, while the norm of the solution tends to 
zero. This synthetic result also demonstrates that the spectral 
responses are well-recovered while the distributions of the 
relaxation times remain slightly noisy.

TEST USING REAL DATA
Tests on experimental data are less straightforward than on syn-
thetic data as explained below. We limit our testing in this paper 
to laboratory measurements, which do not include electromag-
netic coupling effects due to the small size of the quadrupole 
measurements. However, the data usually exhibit high-frequency 
behaviour (see Appendices A and B). This high-frequency die-
lectric effect (Olhoeft 1979; Campbell and Horton 2000) may be 
approximated by an additive term iwe∞ to the spectral conductiv-
ity (see Appendix A and also Kruschwitz et al. 2010). This addi-
tive term does not lead to a suitable time constant distribution 
(see discussion in Appendix B) and should be adjusted and 
removed from original spectral data prior to attempting to 
retrieve the distribution of relaxation times gτ (τ).

While the retrieval of the gτ (τ) distribution provided by the 
resolution of equation (6) and the above described procedure can 

FIGURE 3

The solution in the synthetic (but 

noisy) case is presented in the 

favourable case corresponding to 

the optimal choice of the 

W-parameter, at the corner of the 

L-curve (see Fig. 1). The model is 

shown by a plain line while the 

inverted solution corresponds to 

the dotted line. Figures (a) and 

(b) are relative to the SIP-

FUCHS-II frequency range, typi-

cally [10-3, 1.2×104] Hertz while 

(c) and (d) correspond to a broad-

er range of frequencies, [10-8, 

108] Hertz.
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The first inversion is performed with the data found in 
Anderson et al. (2001). He selected a mine iron waste materials 
sample, rehydrated with 10% water (Fig. 4a). Resistivity data 
were fitted by Anderson et al. (2001) with the sum of two Cole-
Cole models after removal of the dielectric effect as described by 
Campbell and Horton (2000):

� (36)

(K
∞
 denotes high-frequency permittivity) with the complex resis-

tivity given by,

�  (37)

The recovered time constant distribution obtained with the resistiv-
ity data can be compared with the theoretical distribution for a sum 
of Cole-Cole models (Fig. 4b) and provides a better fit on experi-
mental data than the double Cole-Cole reference model (Fig. 4c). 
The L-curve analysis shows a clear L-shape (Fig. 4d) and therefore 
a clear optimal choice of the damping factor W. Therefore, our 
actual retrieved distribution appears to be more complex than pro-
vided by fitting the double Cole-Cole distribution.

A second inversion is performed on a wetting oil-bearing 
sand sample (Revil et al. 2011), after removal of the high-fre-

with the following relation between the two relaxation time con-
stants in the time and frequency domains:

� (35)

w with m classically define as 1–ρ∞ /ρ0. Despite a shift in time, 
both time constant distributions gτ

(ρ) and gτ
(σ) can be superimposed, 

expressed by Model 2 in Table 1, and the same gτ(τ) distribution 
could be indifferently retrieved from complex resistivity or con-
ductivity data. However, for the more general case, the equivalence 
does not apply and special care should be taken while choosing to 
deal with either complex resistivity or conductivity data.

The inversion of experimental data was performed with the 
optimum Wiener parameter determined through the L-Curve 
analysis and the reconstructed quadrature spectra agree well with 
experimental data. Standard Fourier transforms however use a 
regularly spaced value in the data space. Raw and irregularly 
spaced experimental data should therefore be interpolated in the 
logarithmic frequency space before processing. Special care is 
necessary for the continuation to zero at both sides of the quad-
rature spectra after removal of the high-frequency effect. This 
necessary continuation is performed by extrapolation of the data 
over several decades on both sides of the spectrum in order to 
control tapering and to prevent a strong Gibbs effect due to the 
limited ranges of experimental data in the frequency domain.

FIGURE 4

Inversion of experimental data 

from laboratory measurements 

using a mine iron incline waste 

sample re-hydrated with 10% 

water (from Anderson et al. 

2001). a. Experimental raw data, 

high-frequency dielectric effect 

and corrected data after dielectric 

effect removal (K∞ = 3000). b. 

Optimum recovered time con-

stant distribution from resistivity 

data after L-curve analysis. The 

reference distribution (m1 = 0.09, 

τ1 = 0.23 sec, c1 = 0.3, m2 = 0.29, 

τ2 = 3.3×10-3 sec., c2 = 0.62) cor-

responds to the double Cole-Cole 

distribution provided by 

Anderson et al. (2001). c. 

Processed and reconstructed data 

from time constant distributions. 

d. L-curve analysis and optimum 

W-parameter (W = 7.9×10-4).
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analytical solution like a Cole-Cole model. The classical least-
square inversion scheme is replaced by a fast Wiener deconvolu-
tion, which is very important to invert a huge number of spectra 
in time-lapse spectral induced polarization. This approach is 
successfully validated on analytical problems, synthetic case 
studies and real data. When applied to real data, a key step of our 
approach is to remove the high-frequency dielectric component 
of the spectra. This approach, which is computationally quite 
simple to implement, could be coupled to time-lapse 3D fre-
quency domain induced polarization algorithms (e.g., Karaoulis 
et al. 2011) to determine the change on the distribution of 
relaxation times of the subsurface, for instance for salt tracer 
plume monitoring, bioremediation and the production of heavy 
oils. We plan to expand this approach in the future to broadband 
frequency measurements, including both low-frequency IP and 
high-frequency dielectric effects. This approach could also be 
applied.
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quency dielectric effect. The corrected conductivity spectrum 
appears quite complicated and attempts to fit a multi Cole-Cole 
model or a more complicated analytical distribution could be 
cumbersome. After our Fourier transform processing, the con-
ductivity time constant distribution is distributed between 10-6 s 
and 103 s with a peak around 3×10-5 s and another peak around 
5–12 s (see Fig. 5c). Once again, the L-curve analysis provides 
a clear choice for the optimal value of the damping factor 
(Fig. 5d). Because of the effect of oil and grain size, it is diffi-
cult to give a physical explanation to the physical nature of these 
peaks in the distribution of relaxation times. One may be due to 
the grains and the other one due to the roughness of the grains 
(see discussion in Leroy et al. 2008). In the case for which the 
distribution of relaxation time can be clearly mapped into a 
distribution of grain sizes (see Revil and Florsch 2010), we 
provide in Appendix D the relationships between the conductiv-
ity distribution of relaxation times and the distribution of grain 
sizes. In the case where the relaxation times would be controlled 
by the pore sizes, similar relationships could be derived to map 
the distribution of relaxation times into a distribution of pore 
sizes.

CONCLUSIONS
We have developed a new approach to invert the distribution of 
relaxation times in induced polarization without the need for an 

FIGURE 5

Experimental and reconstructed 

quadrature conductivity spectra 

for oil-bearing sand (data from 

Revil et al. 2011). 

a. Experimental raw data, high-

frequency dielectric effect and 

corrected data after dielectric 

effect removal (K∞ = 4).

b. Optimum recovered time con-

stant distribution from conductiv-

ity data after L-curve analysis.

c.  Processed and reconstructed 

data from time constant distribu-

tions. 

d. L-curve analysis and optimal 

W-parameter (W=5×10-4).
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� (A10)

� (A11)

� (A12)

� (A13)

The dielectric constant ε
∞
 denotes the high-frequency constant of 

the porous material and b = σ
∞
 denotes the high-frequency elec-

trical conductivity. Note that the chargeability is given by,

� (A14)

� (A15)

� (A16)

APPENDIX B
Retrieval of the time constant distribution accounting for 
the high-frequency dielectric effect
As shown in equation (A10) of Appendix A, we need to consider 
an additional frequency-dependent term to the low-frequency 
polarization for which we are looking for the relaxation time 
distribution. This term corresponds to the following frequency-
dependent impedance,

Mw(w) = iCw,� (B1)

where C is a capacitance. The admittance of a rock sample at low 
frequency takes therefore the following form, similar to equation 
(A10) of Appendix A:

� (B2)

The question we want to tackle in this appendix is the following: 
starting with equation (B2), can we still find a distribution of 
relaxation times using the approach developed in the main text? 
Using the changes of variables provided by equations (10) and 
(11) of the main text, we can write,

� (B3)

As discussed in the main text, we only consider the imaginary parts 
of equation (B3). To account for the last term of equation (A3), a 
method could be simply to adjust a value of C in order to fit the 
high-frequency end of the frequency response (using the very few 
high- frequency points). In a second step, we would just remove 
this linear response from the data and then consider the approach 
developed in the main text for which this term has been omitted.

APPENDIX A
The high-frequency dielectric effect.
While the equations presented in the main text are general (not 
dependent on the physics of the polarization process), it is 
instructive to show how they would apply to a specific polariza-
tion model. In the case of water-saturated sands, we can use the 
model developed recently by Revil and Florsch (2010). To 
model the entire frequency spectrum investigated experimen-
tally, we need to add to the low-frequency polarization of the 
electrical double layer of the grains a high-frequency dielectric 
effect. The complex effective conductivity and the apparent 
phase lag of the porous material are given by (Revil and 
Florsch 2010),

� (A1)

� (A2)

The effective conductivity and the effective permittivity are 
defined by

� (A3)

� (A4)

In these equations Re[.] and Im[.] represent the real and imagi-
nary components of the complex number in the argument. 
Introducing F as the formation factor, the effective complex 
conductivity is given by:

� (A5)

The complex conductivity of the solid grain σS
* (due to the elec-

trical double layer coating the surface of the grains) and the 
complex conductivity of the pore water σ*

f are defined by,

� (A6)

� (A7)

respectively, σ
f
 denotes the conductivity of the pore water, ε

f
 

denotes the dielectric constant of the pore water and ε
S
 the die-

lectric constant of the grains. We can use ε
f
 = 80±1 ε0 (pure 

water) and ε
S
 = (4.6±0.8) ε0 (silica) and ε0 = 8.854×10−12 F m-1. 

The surface conductivity is described by a distribution of relaxa-
tion times

� (A8)

� (A9)

with b
S
 = σ

S
∞ and a

S
 = σ

S
0 - σ

S
∞. Combining equations (A5)–(A9) 

yields
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Now using l → +∞, we obtain,

� (B13)

This function can be expression as a function of the relaxation 
time τ by,

� (B14)

Although the term,

� (B15)

can be computed for any value of λ, it is clear that in the limit 
l → +∞ the previous function is not compatible with the fre-
quency trend given by Mw(w) = iCw. Therefore, there is no way 
to eliminate the high-frequency dielectric term by keeping this 
term in the general formalism used to determine the distribution 
of the relaxation times. It seems therefore that the only way to 
proceed is to fit the high-frequency term and to remove it from 
the data before determining the distribution of the relaxation 
times. This also implies that high-frequency (at least to 10 kHz) 
measurements need to be performed to remove this contribution 
from the data. Methods that do not consider the removal of this 
high-frequency response provide a biased estimate of the relaxa-
tion time distribution.

APPENDIX C
Wiener deconvolution scheme and the use of the L-curve
The Wiener filtering (or deconvolution) is a useful method to per-
form stable deconvolution. It can be expressed in the time domain 
(Wiener 1949), or equivalently in the frequency domain. In this 
later case, we can process directly the frequency domain IP data. 
We provide here a general view of the problem with more general 
notations. The deconvolution can be stated as follows,

�   (C1)

where Φ(t) denotes the impulse function of the system and ‘⊗’ 
denotes the convolution product. The goal is to recover the function 
x(t) (or X(ω) in the Fourier domain) from ymeasured(t) (or Ymeasured(ω)), 
the latter being the output measured signal through a convolution 
filter and is additionally affected by the noise(t) (or alternatively in 
the frequency domain Noise (ω)). In the present case, we process 
frequency domain IP data and therefore we look for an operator 
Ψ(ω) in such a way that we can retrieve the function X(ω):

�  (C2)

If we assume that Φ(ω) never vanishes over the studied fre-
quency range, one may use the following trivial choice, which is 
also the exact solution in the absence of noise:

An alternative and a priori possible solution should consist in 
accounting for this high-frequency term directly into the function 
for which we look for the distribution of relaxation times. This 
goal can be reached only if we can find a function Ct(t) satisfy-
ing to:

� (B4)

Can we really find such a function? Taking into account the 
change of variable given by equation (10) and dealing with the 
imaginary part only, we obtain:

� (B5)

Using the same approach as in the main text, the solution is for-
mally given by:

� (B6)

where  is the Fourier transform of . Clearly, this 
Fourier transform does not exist. To bypass this difficulty, one 
can multiply  by an appropriate weighting function that 
renders the Fourier integral convergent. A good weighting func-
tion is bell-shaped and dependent on an auxiliary parameter λ. 
Then, we could delete this term at the end of the calculations. 
The following function:

� (B7)

may be appropriate. To test this possibility, we form the new 
function:

� (B8)

We have:

� (B9)

The Fourier transform of Φa,z(z) is given by:

� (B10)

Then, the solution that we are looking for (still involving the 
auxiliary parameter λ) is given by,

�(B11)

� (B12)
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The reason why the Wiener filter stabilizes the inversion appears 
clearly when considering this operation. Indeed, without Wiener 
filtering, the spectrum of the original signal to be deconvoluted has 
to be divided by ‘1/cosh’. A multiplication by the function ‘cosh’, 
which increases like an exponential of the frequency, is responsible 
for the following spurious problem. The high-frequency part of the 
spectrum that contains some noise, which would blow up, is multi-
plied by the function cosh. Conversely, in equation (C5) (in general) 
or equation (C10) (this study), the multiplicative function is damped 
at high frequencies only due to the term including W. Actually, the 
main difficulty is to choose wisely the damping factor W. If the 
damping factor is too high, it may squeeze the solution (that is, from 
the flat right part of the L-curve to the descent on its right side). If 
the damping factor is too low, it lets the solution blow up. Therefore, 
the corner point of the L-curve corresponds to the point where the 
solution is properly damped and the synthetic (re-computed) signal 
fits well the original data. The shape of the L-curve we obtained for 
our problem is similar to the shape of the L-curves shown in Fig. 1 
of Agarval (2003) or Fig. 1 of Hansen and O’Leary (1993).

APPENDIX D
Relation between the time constant distribution and grain 
size distribution.
Deciding whether the distribution of relaxation time should be 
inverted from complex conductivity or from complex resistivity 
is truly a question of physics. This is why we distinguish the 
resistivity distribution of relaxation time from the conductivity 
distribution of relaxation times. In the model developed recently 
by Revil and Florsch (2010), the relevant physical distribution 
was the conductivity distribution of relaxation times. We assume 
that the relationship between grain diameter d and time constant 
τ is given by:

� (D1)

where D denotes the diffusion of the counterions in the electrical 
double layer. The functions gτ(τ) and hd(d) denote the distribu-
tion of τ and d, respectively. These distributions are both proba-
bility density functions and to switch from one parameter to 
another we must follow a transformation that is valid in terms of 
probability. We assume that the diffusion coefficient of the coun-
terions in the electrical double layer D is constant. Then the 
relationship between the two densities is given by:

� (D2)

This yields, by taken into account relation (D1) and its deriva-
tive, the following two transformations: (i) to go from gτ(τ) to 
h

d
(d) we shall use:

� (D3)

while (ii) to go from h
d
(d) to gτ(τ), we shall use:

� (C3)

That said, in general these conditions are not fulfilled and there-
fore Ψ(ω) cannot be derived from such a simple division. Wiener 
defined his deconvolution filter as,

�  (C4)

 
where N(ω) and S(ω) are the power spectral densities of the sig-
nals noise(t) and x(t), respectively and (*) is used to define the 
complex conjugate of the function. Note that if S(ω) never van-
ishes, the preceding equation may be written as:

�  (C5)

In the case where N(ω) is small (low noise), we recover equation 
(C3). It is frequent that no information is available to predict the 
ratio N(ω) / S(ω) and then it can be taken as a constant, saying 
λ2. In such a situation, the Wiener deconvolution is equivalent to 
the Thikonov regularization and λ2 identifies itself to the damp-
ing factor. This is also why we can apply the L-curve method to 
our problem.

In our case, in equation (19), we have,

�  (C6)

and we want to retrieve the function . To do this, we have 
to divide  by:

� (C7)

That is, this latter function fulfils the role of Φ(ω) in the presen-
tation above. We can therefore write this equivalence as,

� (C8)

Note that is this case Φ = Φ*. Then, we apply an operator of the 
form (dropping the explicit dependence in ω):

� (C9)

introducing W as our damping factor. Including the appropriate 
constants, this leads to the operator used in the main text for the 
IP problem:

� (C10)
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(d) and the distribution Gs(s) given by equation 
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(d) is given by ,
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