
Geophys. J. Int. (2010) 181, 1480–1498 doi: 10.1111/j.1365-246X.2010.04573.x

G
JI

M
ar

in
e

ge
os

ci
en

ce
s

an
d

ap
pl

ie
d

ge
op

hy
si
cs

Determination of permeability from spectral induced polarization
in granular media

A. Revil1,2 and N. Florsch3,4

1Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA. E-mail: arevil@mines.edu
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S U M M A R Y
The surface conductivity of porous rocks has two contributions: the first is associated with
the diffuse layer coating the grains and is frequency-independent as long as the diffuse layer
is above a percolation threshold. The second contribution is associated with the Stern layer
of weakly sorbed counterions on the mineral surface and is frequency-dependent if the Stern
layer is discontinuous at the scale of the representative elementary volume. In the frequency
range 1 mHz–100 Hz, this second contribution is also associated with the main polarization
mechanism observed by the spectral induced polarization method in granular media (neglecting
the contribution of other polarization processes like those associated with redox processes and
membrane polarization). At the macroscale, we connect the Stern layer contribution to the
complex conductivity and to the expectation of the probability distribution of the inverse of
the grain size. This is done by performing a convolution between the probability distribution
of the inverse of the grain size and the surface conductivity response obtained when all the
grains have the same size. Surface conductivity at the macroscopic scale is also connected to an
effective pore size used to characterize permeability. From these relationships, a new equation
is derived connecting this effective pore size, the electrical formation factor, and the expected
value of the probability distribution for the inverse of the grain size, which is in turn related
to the distribution of the relaxation times. These new relationships are consistent with various
formula derived in the literature in the limit where the grain size distribution is given by the
delta function or a log normal distribution and agree fairly well with various experimental
data showing also some limitations of the induced polarization method to infer permeability.
One of these limitations is the difficulty to detect the relaxation, in the phase, associated with
the smaller grains, as this polarization may be hidden by the Maxwell–Wagner polarization
at relatively high frequencies (>100 Hz). Also, cemented aggregates of grains can behave as
coarser grains.

Key words: Probability distributions; Electrical properties; Hydrogeophysics; Permeability
and porosity.

1 I N T RO D U C T I O N

In the last decade, there has been a renewal of interest in the spec-
tral induced polarization method (also called complex resistivity,
complex conductivity, or low frequency dielectric spectroscopy) in
near surface geophysics to image and characterize non-intrusively
ground chemical and transport properties (Börner et al. 1996; de
Lima & Niwas 2000; Slater & Lesmes 2002a,b; Binley et al. 2005;
Hördt et al. 2007; Nordsiek & Weller 2008) and drying (Cosenza
et al. 2007; Ghorbani et al. 2009). However, induced polariza-
tion, like attenuation in seismic, is notoriously difficult to interpret
quantitatively because of the superposition of various types of po-

larization mechanisms, which may overlap in the frequency domain
(Olhoeft 1985; Cosenza et al. 2008; Leroy et al. 2008; Leroy & Revil
2009; Jougnot et al. 2010). In metal-free and bacteria-free porous
media, three main mechanisms seem to control induced polariza-
tion. (1) The polarization of the Stern layer coating the mineral sur-
face is playing an important role as first shown by Schwarz (1962).
(2) The Maxwell–Wagner polarization represents the blocking of
the ions at dielectric boundary layers in heterogeneous materials
like porous media (Maxwell 1892; Wagner 1914). This second con-
tribution is related to the discontinuity of the displacement current at
the interfaces between different phases. (3) The membrane polariza-
tion which corresponds to an extension of the membrane potential
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of self-potential theory (see Revil et al. 1999) to the frequency
domain (Marshall & Madden 1959).

The polarization of the Stern layer arises in a wide frequency
range from 1 mHz to 100 Hz and is controlled by the grain size
distribution (Leroy et al. 2008) while the Maxwell–Wagner polar-
ization occurs at higher frequencies (usually >10 Hz) (Chen & Or
2006) and is controlled by the formation factor, the surface con-
ductivity, and the dielectric properties of the different phases. The
membrane polarization will not be considered in this paper. It cer-
tainly deserves a dedicated research work and to our knowledge
only the work of Vinegar & Waxman (1984) has considered mem-
brane polarization and double layer polarization together using a
semi-empirical approach.

In this paper, we will consider only the polarization of the Stern
layer assuming that the two other contributions can be safely re-
moved from the total (measured response) or that the electrochem-
ical polarization of the Stern layer is the main polarization mech-
anism in the frequency band considered, typically 1 mHz–10 Hz
(see Leroy et al. 2008 for few examples showing potential distinct
signatures for the three contributions discussed above). We will
demonstrate that when this is the case, the complex conductivity or
resistivity response can be tied to hydraulic parameters.

The potential relationship between permeability and complex
conductivity has recently been one of the main drivers of scien-
tific works on induced polarization. A number of researchers have
shown that spectral induced polarization is sensitive to hydraulic
parameters and may offer a non-intrusive method to image perme-
ability in the field, at least in cases where no other polarization
mechanisms could mask the polarization contribution responsible
for this relationship. Works have been done showing that spectral
induced polarization can be used, for instance, to determine the
mean grain size, the mean pore size, the specific surface area, and
the permeability of natural and artificial porous media (Börner &
Schön 1991; Sturrock 1999; Lesmes & Morgan 2001; Titov et al.
2002; Scott & Baker 2003, 2005; Binley et al. 2005; Kemna et al.
2005; Tong et al. 2006a,b; Leroy et al. 2008). Unfortunately, none
of these works offered a mechanistic understanding for these rela-
tionships. Recently, De Lima & Niwas (2000) proposed a model
to explain the data reported by Vinegar & Waxman (1984) and the
connection between complex conductivity parameters and perme-
ability. However, their approach is based on a polarization mech-
anism of the diffuse layer that is difficult to accept because usu-
ally the diffuse layer is above a percolation level at the scale of
the representative elementary volume and therefore would hardly
polarize.

In this paper, we build first a new relationship between the main
relaxation time derived from spectral induced polarization and per-
meability for porous media characterized by a delta function for
the grain size distribution. Then, we generalize this approach to the
case of an arbitrary grain size distribution and look at the other lim-
iting case of a broad grain size distribution. We apply the resulting
new relationships to various datasets to check their predictive power
regarding their capacity to predict permeability for the two extreme
cases of very narrow or very broad grain size distributions.

2 T H E O R E T I C A L B A C KG RO U N D

2.1 The electrical double layer

Before describing surface conductivity and its frequency depen-
dence, we need to review the concept of the electrical double layer,

which coats the surface of insulating grains with a special emphasis
on silica and alumino-silicates. All minerals that are in contact with
water develop a net surface charge on their surface because of the
chemical reactivity of surface sites like silanol groups in the case
of silica and silanol, aluminol, and isomorphic substitutions in the
case of clays. This charge is counterbalanced by charges that are
more or less weakly sorbed onto the mineral surface in a monolayer
called the Stern layer. This layer is situated between the o-plane and
the d-plane of Fig. 1. The o-plane corresponds to the true mineral
surface while the d-plane corresponds to the inner surface of the
electrical diffuse layer. The existence of this Stern layer is consistent
with molecular dynamic simulations of the electrical double layer
(see recently Tournassat et al. 2009). The surface charge plus the
charge of the Stern layer are counterbalanced by charges located in
the electrical diffuse layer where charge carriers are only subjected
to the Coulombic force (Fig. 1). The result is that the activity of
the counterions (the counterions are characterized by charges that
are opposite to the fixed charge of the mineral surface) and the
co-ions (same charge) in the diffuse layer obey a Boltzmann dis-
tribution in the Coulombic field created by the fixed charge on the
grain surface. Revil & Leroy (2004) introduced a partition coeffi-
cient of the counter-charge between the Stern and the diffuse layers,
f (dimensionless). This partition coefficient f can be computed
as

f =

Q∑
i=1

qi�
S
i

Q∑
i=1

qi�
S
i +

Q∑
i=1

qi�
d
i

, (1)

where Q is the number of possible ionic species i that are present in
the Stern layer and in the diffuse layer, qi is the charge of species
i (in C, positive or negative), �S

i represents the surface site density
of species i in the Stern layer (number of species i per unit surface
area of the mineral water interface in m−2), and �d

i represents the
equivalent surface site density of the diffuse layer (equivalent num-
ber of ion i of the diffuse layer per unit surface area of the mineral
water interface, in m−2).

We define also a total charge density of counterions per pore
volume QV (in C m−3). This charge density is the net charge density
of the pore water from the o-plane to the centre portion of the
pore space, therefore including the Stern layer. It comprises two
contributions: the charge density due to the existence of the Stern
layer and the charge density due to the diffuse layer. We denote Q̄V

(in C m−3) as the charge density per unit of volume of solution in the
medium due to the diffuse layer only. These two charge densities are
phase average of the local charge density. They are related to each
other by the partition coefficient f defined through the following
relationship:

Q̄V = (1 − f ) QV , (2)

and QV can be determined from the Cation Exchange Capacity
(CEC, expressed in C kg−3) of the rock

QV = ρS

(
1 − φ

φ

)
CEC, (3)

where ρS is the mass density of the solid phase (in kg m−3) and
φ is the connected porosity. The CEC accounts for the charges
sorbed onto the mineral surface (diffuse and Stern layers). It can be
obtained from a simple chemical titration of the mineral surface (see
Yukselen & Kaya 2008 and references therein). Because clays have
large specific surface areas, they usually carry most of the CEC.
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Figure 1. Sketch of the distribution of the ionic species in the pore space of a charged porous medium at equilibrium. The pore water is characterized by a
volumetric charge density Q̄V corresponding to the charge of the diffuse layer per unit pore volume (in C m−3). The Stern layer is responsible for the excess
surface conductivity �S (in S) with respect to the conductivity of the pore water σ f while the diffuse layer is responsible for the excess surface conductivity
�d . The Stern layer is comprised between the o-plane (mineral surface) and the d-plane, which is the inner plane of the electrical diffuse layer. The diffuse
layer extends from the d-plane into the pores.

Note that we have not made any assumption regarding the size of
the diffuse layer. Usually, the thickness of the electrical double layer
remains thin with respect to the size of the throats and the size of
the grains. To the contrary of what we can find in the geophysical
literature, the importance of surface conductivity has nothing to do
with the ratio of the thickness of the diffuse layer with respect to
the radius of the pores.

It should also be mentioned that the sorption of the counterions in
the Stern layer can occur at different distances from the o-plane of
Fig. 1 depending on the affinity of the counterions with the mineral
silanol and aluminol surface sites, for instance. If the counterions
keep their hydration shell, their mobility is likely to be close to their
mobility in the free water. This is usually the case for sodium on
silica. At the opposite, if the counterions are located close to the
mineral surface, their mobility is likely to be much smaller than in
the free water. This is the case of aluminium on silica, for instance.
While not shown in this paper, this has dramatic implications re-
garding the spectral induced polarization signature of the sorption
of cupper, zinc, or lead occurring on a mineral surface (P. Vaudelet,
personal communication, 2009).

Surface conductivity corresponds to the electrical conduction in
the electrical double layer coating the surface of the grains (e.g.
Zukoski & Saville 1986a,b; Lyklema 1995, 2002; Revil & Leroy
2001). Apparently, two contributions can therefore co-exist. The
first is the electrical conduction in the diffuse layer and the second
is the electrical contribution of the Stern layer as described for
instance in the dynamic Stern layer model of Zukoski & Saville
(1986a). We denote g as the fraction of surface conductivity due to

the diffuse layer. This new partition coefficient is defined by

g =

Q∑
i=1

β S
i |qi | �S

i

Q∑
i=1

β S
i |qi | �S

i +
Q∑

i=1
βd

i |qi | �d
i

, (4)

where βS
i and βd

i are the mobilities of species i (expressed in
m2 s−1 V−1) in the Stern layer and in the diffuse layer, re-
spectively. Following Dukhin & Shilov (2002), Lyklema (2002),
Tarasov & Titov (2007), and Leroy et al. (2008), we assume βS

i =
βd

i = β i where β i is the mobility of species i in the free wa-
ter. This strong assumption is however not shared by Zukoski
& Saville (1986b), for instance, and should be considered with
caution.

We assume below a simple 1:1 salt completely dissociated elec-
trolyte like NaCl. With these two assumptions, f = g, but we should
keep in mind that this is not necessarily true for multicomponent
electrolytes. The case of a multicomponent electrolyte will be dis-
cussed briefly later. In Fig. 2, we plot the value of f = g for both
various clay minerals and silica using the double layer models de-
veloped by Leroy et al. (2008) and Leroy & Revil (2009). We see
that the value of f is very high for clays, which means that most
of the counterions are located in the Stern layer. For both clays and
silica, f increases with the salinity.

We assume now that there is no electrical conductivity contribu-
tion from the Stern layer at zero frequency (see Leroy et al. 2008).
A simple equation to describe the DC electrical conductivity of a
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Figure 2. Comparison between the value of the partition coefficient for clay
minerals and silica (modified from Leroy & Revil 2009). (a) Clay miner-
als. (b) Silica beads. The plain lines represent estimate from a triple layer
model while the symbols are estimates from spectral induced polarization
measurements as discussed by Leroy et al. (2008).

porous rock is given by having the pore space and surface con-
ductivity working in parallel. The conductivity of the pore water is
σ f and the surface conductivity is the product of the charge con-
centration by the mobility of the counterions β(+) Q̄V . These two
contributions need to be divided by the formation factor to account
for the tortuous paths of the current lines through the connected
porosity. This yields

σ0 = 1

F
(σ f + β(+) Q̄V ). (5)

We replace now the volumetric charge density of the diffuse layer
per unit pore volume Q̄V using eq. (2). This yields

σ0 = 1

F
[σ f + β(+)(1 − f )QV ]. (6)

We replace the quantity β (+)(1 − f ) by an apparent mobility βS .
This gives

σ0 = 1

F
[σ f + βS QV ]. (7)

Eq. (7) is derived in Appendix A from a different approach. This
equation is also similar to the Waxman & Smits (1968) equation
widely used in the oil industry to interpret borehole resistivity data.

However, in Waxman & Smits (1968), the non-linear behaviour of
the conductivity curve (when plotted as a function of the conduc-
tivity of the brine) is described by using a non-physical dependence
between the apparent mobility of the counterions and the salinity.
Therefore, the apparent mobility of the counterions βS in the mod-
els developed by Waxman & Smits (1968) and later by Revil et al.
(1998, 2002), Revil & Glover (1998) and Revil (1999) should be
understood as an apparent mobility of the counterions of the diffuse
layer and not as a true mobility of the counterions in the Stern layer.
The fact that the apparent mobility of the counterions is found to be
10 times smaller than the mobility of the same ions in the bulk pore
water is actually coming from the partition of the charge between
the Stern and the diffuse layers that should be accounted for in the
conductivity model.

A last comment needs to be made before extending eq. (7) in the
frequency domain. We point out that the linear conductivity model
described above contradicts usually experimental data, which show
that, at low salinities, the electrical conductivity of the porous mate-
rial σ 0(σ f ) is a non-linear function of the conductivity of the brine
σ f . Usually this observation is very well reproduced by conductiv-
ity models derived from the effective medium theory (see Bussian
1983; de Lima & Sharma 1992; Revil et al. 1998 for instance). This
is because effective differential models use a distinct tortuosity for
the bulk conductivity and for surface conductivity. Using such a
non-linear model is avoided below because it is difficult to sepa-
rate real and imaginary components analytically while this is very
easy with a linear model. This is why in this paper, we will use
a linear conductivity model. This assumption may be responsible
for some of the bias observed below between the theory and the
experimental data. However, obtaining a complete analytical model
is a good start to go further in the near future towards a complete
numerical or semi-analytical model using a non-linear conductivity
model.

2.2 Permeability from surface conductivity

Using a perturbation theory of the DC-conductivity response of
an uncharged porous material saturated by a brine, Johnson et al.
(1987) obtained the following high salinity asymptote for the DC
electrical conductivity of a saturated porous material with a diffuse
layer coating the solid phase,

σ0 = σ f

F

(
1 + 2

�

�d

σ f
+ ...

)
, (8)

to the first order in the dimensionless parameter θ = 2�d/�σ f

where � (in m) is the characteristic pore size of the porous material,
�d (in S) is the specific surface conductivity of the electrical diffuse
layer (the excess electrical conductivity in the electrical diffuse
layer with respect to the undisturbed pore water integrated over the
thickness of the electrical diffuse layer, see Fig. 1). Eq. (8) can
be also obtained using a volume-averaging approach of the local
Nernst–Planck equation assuming a thin electrical double layer with
respect to the two main radii of curvature of the mineral/pore water
interface (Pride 1994) or by upscaling Joule dissipation (Bernabé
& Revil 1995; Revil & Glover 1997). Eq. (8) is in principle valid
for any type of pore space topology (including silica grains with
clays lining, bridging, or filling the pores) as long as the pores
are interconnected and the roughness of the mineral/pore water
interface is not too severe.

Using a more specific approach (namely the effective differen-
tial medium theory for a granular material), Bussian (1983) and
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De Lima & Sharma (1992) found the following high salinity asymp-
tote

σ0 = σ f

F

[
1 + m (F − 1)

σ 0
S

σ f
+ · · ·

]
, (9)

σ 0
S = 4�d

d0
, (10)

F = φ−m, (11)

where σ 0
S is the DC electrical conductivity of the solid grains, which

is related to the specific surface conductivity of the electrical diffuse
layer �d and to the grain diameter d0 by eq. (10). Eq. (11) represents
Archie’s law (Archie 1942) and m is called the first Archie exponent
or the cementation exponent. Note that eq. (9) is consistent with eq.
(A4) of Appendix A in the case where m = 1 in the pre-factor of the
term (1 – F). The conductivity of the grains is due to the electrical
double layer coating the insulating grains (Fig. 1). Eq. (10) implies
also that if all the grains have the same grain diameter d0, they all
have the same equivalent conductivity σ S .

A comparison between eqs (8) and (9) yields an expression of
the hydraulic pore radius � for a granular material as discussed by
Revil & Cathles (1999)

1

�
= 2m(F − 1)

d0
. (12)

Despite the fact that eq. (12) is derived from high-salinity asymp-
totic behaviours, this relationship is independent of the salinity be-
cause it comprises only textural parameters.

The permeability k (in m2) is related to F and � by (Johnson
et al. 1986; Avellaneda & Torquato 1991; Bernabé & Revil 1995)

k = �2

8F
. (13)

This relationship is very general and holds for a wide range of
pore space topologies including the presence of cracks and clay
habits in pores. However, in the following, we restrict our analysis
to granular media. Combining eqs (12) and (13), the permeability of
a granular material is given by (Revil & Cathles 1999; Revil 2007)

k = d2
0

32m2(F − 1)2 F
. (14)

Revil & Cathles (1999) showed that eq. (14) works much better
than the Kozeny–Carman equation to predict the permeability of
consolidated and unconsolidated materials over a wide range of
porosities. While derived using high salinity asymptotic behaviours
for the electrical conductivity versus the salinity, eq. (14) is totally
independent on the salinity as it involves only microgeometrical
parameters.

2.3 Connection to induced polarization

Eq. (7) is a DC-conductivity equation. It needs to be generalized to
AC-current conditions. In spectral induced polarization, one records
the conductivity (or resistivity) from the magnitude of the current
and the measured voltage (corrected by a geometrical factor de-
pending on the position of the electrodes) and a phase between the
AC-current and the voltage in response to a periodic AC-current.
We note ω = 2π f , the angular frequency, in rad s−1, f is the fre-
quency in Hz, and i = (− 1)1/2. The results can be written into a
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of the Stern layer (see Leroy et al. 2008). When the grain size decreases
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complex conductivity σ ∗, a complex resistivity ρ∗, or a complex
permittivity ε∗ by

σ ∗ = 1

ρ∗ = iωε∗. (15)

In the following, we will work only with the complex conductiv-
ity. The relationship between the modulus of this conductivity |σ |
and the phase ϕ on one end and the real and imaginary components
of the conductivity, σ ′ and σ , on the other, are given by

σ ∗ = |σ | exp(iϕ) = σ ′ + iσ ′′, (16)

|σ | =
√

σ ′2 + σ ′′2, (17)

tan ϕ = σ ′′/σ ′. (18)

A typical plot of the phase versus the frequency is given in Fig. 3.
In the following we consider only low frequencies for which the
spectral induced polarization results mainly from the polarization
of the Stern layer and not from the Maxwell–Wagner polarization
(see Fig. 3 showing relaxations associated with both the Stern layer
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and the Maxwell–Wagner polarization). This assumption imposes
a limitation in the grain size that can be investigated by induced
polarization. Indeed, the polarization of the Stern layer of very
small grains may occur at relatively high frequencies for which
the Maxwell–Wagner polarization is the dominant mechanism of
polarization (see Lesmes & Morgan 2001).

With these assumptions, we use the following complex surface
conductivity model (De Lima & Sharma 1992, their eq. (6); Leroy
et al. 2008; Leroy & Revil 2009):

σS = 4

d0
(�d + �S) − 4

d0

�S

1 + iωτ0
. (19)

τ0 = d2
0

8Di
, (20)

where �d is the specific surface conductivity associated with the
diffuse layer and �S is the specific surface conductivity associated
with the Stern layer at high frequencies ω � 1/τ 0 and Di is the
diffusion coefficient of species i. Eq. (19) unifies the theories of
O’Konski (1960) and Schwarz (1962) as done by Schurr (1964).
In the model of O’Konski, the surface conductivity is frequency-
independent and its influence upon the Maxwell–Wagner polariza-
tion of an assemblage of particles is investigated. Schwarz (1962)
developed a frequency-dependent surface conductivity model for
a compact layer of counterions surrounding the grains with the
counterions moving only along the mineral surface.

The real situation is more complicated, as illustrated in Figs 4
and 5. The presence of an electrical field displaces the electrical
diffuse layer in the case where there is no overlap in the diffuse
layer (so only in the dilute suspension of sphere in a background
electrolyte). The total current entering the left-hand side of Fig. 4
flows in the background electrolyte. In the centre part of the figure
and at high values of the Dukhin number, the current is mainly
restricted to the electrical double layer. Because the counterions are
usually located in the Stern layer (Section 2.1), most of the current is
located in the Stern layer. In steady-state conditions, these currents
must have the same magnitude. The electrical current transported

by counterions and coions is proportional to their concentrations but
there is mainly counterions in the electrical double layer. The coions
cannot penetrate the double layer because of Coulombic repulsion.
Consequently, in the centre part of Fig. 4, the fraction of the total
current carried by the coions and the counterions, the so-called
Hittorf numbers (Revil 1999), is different in the bulk electrolyte and
in the electrical double layer. At the opposite, the flow of counterions
entering the left-hand side of the figure is the same as the flow of
coions leaving this side of the figure. Therefore the number of
counterions arriving per unit time towards the left-hand side of
the grain is smaller than the number of counterions transferred in
the electrical double layer. There is therefore a depletion of the
counterions on the left-hand side of the grain. At the opposite, the
number of coions coming to the right-hand side of the figure cannot
be all transferred on the left-hand side. So they accumulate on the
right-hand side of the grain. As the result, there is an increase of
the salinity to the right-hand side of the grain and a depletion in the
salt concentration on the left-hand side of the grain. In this case,
there is a back-diffusion through the pore space of the material and
the diffusion coefficient is the mutual diffusion coefficient of the
salt through the pore space (Revil 1999). This mechanism is called
membrane polarization in the literature (Vinegar & Waxman 1974).

However, there is also the possibility that the back-diffusion oc-
curs in the Stern layer itself and in this case, the diffusion coeffi-
cient entering into the relaxation time is the diffusion coefficient
of the counterions in the Stern layer. This diffusion coefficient can
be related to the mobility of the counterions in the Stern layer by
the Nernst–Einstein relationship, Di = kbT βi/|qi| where kb is the
Boltzmann constant (1.3807 × 10−23 J K−1), T is the absolute
temperature, and |qi| is the absolute value of the charge of the coun-
terions in the Stern layer. According to the dynamic Stern layer
model of Zukoski & Saville (1986a), diffusion of the counterions
along the Stern layer is possible and therefore we will favour the
first assumption in this paper.

The increase of the ion concentration on one side of the pores is
responsible for the membrane polarization also widely described in
the literature (e.g. Marshall & Madden 1959; Titov et al. 2002). A
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Figure 5. Sketch of membrane polarization of a pore sandwiched between two grains. The back-diffusion can occur both in the electrical double layer for the
counterions and in the bulk pore water for the coions. The salt accumulated on one side of the pore diffuses back with a diffusion coefficient that is equal to
the mutual diffusion coefficient of the salt (see Revil, 1999 for an expression of the mutual diffusion coefficient).

sketch of the build-up of salinity gradient across a pore sandwiched
between two grains is shown in Fig. 5. In this case, the length
scale of polarization is again the diameter of the grain. At high
frequencies there is no time for the diffusion to take place while
diffusion redistributes the charge carriers at low frequencies.

Another point concerns the anisotropy of the complex surface
conductivity in the Stern layer. In the model of Schwarz, the surface
conductivity of the Stern layer is anisotropic as the counterions can-
not leave the Stern layer. At the opposite, some models introduce
both normal and tangential components of the specific surface con-
ductivity of the Stern layer (see for instance Chassagne et al. 2002).
Usually the kinetic of the sorption/desorption of the counterions in
the Stern layer is a slow process that can take several hours to reach
equilibrium. Therefore, we favour in this paper a model in which
the counterions can only move tangentially along the mineral/water
interface.

De Lima & Sharma (1992) used eq. (19) to investigate the polar-
ization of the electrical double layer with the frequency-independent
contribution associated with the diffuse layer and the frequency-
dependent contribution associated with the Stern layer. However,
they favour in their paper another model of polarization of the dif-
fuse layer, namely the Fixman’s model developed initially to model
the polarization of suspensions of colloids, each colloidal particle
being surrounded by a diffuse layer of counterions responsible for
a strong polarization of the colloidal suspension at low frequencies
(Fixman 1980). Because the diffuse layer of a dense aggregate of
grains is continuous, we doubt that there is a charge accumulation

associated with the polarization of the diffuse layer and we dismiss
this contribution in our model.

A description of the two contributions to the specific surface
conductivity (sometimes called the specific surface conductance
because it is expressed in Siemens) is sketched in Fig. 1. Eq. (19)
represents the conductivity of an insulating sphere coated with the
electrical double layer with the following assumptions. (1) The
double layer is thin with respect to the radius of the grains. (2)
The charges of the Stern layer can move only tangentially along the
mineral surface. Back-diffusion in the Stern layer is responsible for
the decay of this contribution with the decrease of the frequency.
(3) The polarization of the diffuse layer is minimized by the fact
that the diffuse layer is above a percolation threshold at the scale of
a representative elementary volume. Therefore there is no or only
small deformation of the diffuse layer in response to an electrical
field.

The relaxation time τ 0 is the time required to establish a stationary
ionic distribution in the Stern layer coating a grain of diameter d0

under the action of a static electrical field. Eq. (20) implies that
the relaxation time scales with the square of the grain size, a result
confirmed for instance in the laboratory by Titov et al. (2002) using
sieved sands and by Leroy et al. (2008) using glass beads as well as
in colloidal chemistry (Swan 2000).

We define a low-frequency and high-frequency asymptotic
surface conductivities as

σ 0
S = 4

d0
�d , (21)
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σ∞
S = 4

d0
(�d + �S). (22)

With these definitions, we can write eq. (19) as

σS = σ∞
S + σ 0

S − σ∞
S

1 + iωτ0
. (23)

According to this model, surface conductivity is characterized
by a low-frequency asymptotic value, σ 0

S , and a high-frequency
asymptotic value, σ∞

S . The transition between both values occurs
at frequencies corresponding to the inverse of the relaxation time
τ 0. This case corresponds to the case of a Dirac distribution for
the relaxation time. Replacing the grain diameter in eq. (14) by the
expression of the relaxation time, eq. (20), we obtain the following
equation for the permeability as a function of the relaxation time

k = Diτ0

4m2(F − 1)2 F
. (24)

In this equation, the permeability depends linearly on the relax-
ation time.

In previous approaches found in the literature, the exponents
between the permeability and the formation factor and between the
permeability and the main relaxation time were fitted according to
the data using a general empirical relationship written as k = aτ b

0 Fc

where a, b and c were fitting constants. These constants were not
predicted from the theory. In our model, we predict the values of a,
b and c.

We first perform a comparison between the prediction of eq. (24)
and the data reported in Tong et al. (2006b, table 1) who used time
domain induced polarization to extract the main relaxation time
τ 0 stating that the relaxation curve can be described by a sum of
decreasing exponentials (this idea can be traced back to Wagner
1914). They investigated 123 clayey sandstone core samples from
the Daqing oil field in China. These samples were saturated by a
5 g L−1 NaCl solution (DNa+ = 1.29 × 10−9 m2 s−1). They also
measured the permeability (with gas) and found that the perme-
ability was in the range 0.1–770 mD and the porosity was in the
range 0.071 and 0.215. A comparison between the prediction of
eq. (24) and their data is shown in Fig. 6. Despite the fact that the
formation factors were measured, their values were not reported by
Tong et al. (2006b). In our evaluation, the formation factors were
computed from the porosities using Archie’s law, eq. (11), with m =
2 as default value (classical Archie’s law is indeed F = φ−2). A
comparison between the measured and predicted permeabilities is
reported in Fig. 6. We obtain a fair comparison between the model
and the data without the use of any flush factor. This is however a
substantial improvement over the method proposed by Tong et al.
(2006b), which requires a formation-dependent fit of the data.

We consider next the case of an unconsolidated sand or a pack of
glass beads. Taking m = 3/2 (the value of the cementation exponent
for a pack of spherical grains according to the differential effective
medium theory, see Sen et al. 1981) and F >> 1, we obtain

k = Diτ0

9F3
. (25)

This equation is consistent to eq. (2.40) from Kemna (2000, p. 34)
who suggested that the permeability is proportional to τ 0/Fu with
the exponent u depending on both the cementation exponent m and
the fractal dimension of the pore/mineral interface.

A number of measurements have been performed with sands.
For cohesionless sands, usually m = 1.3 (Sen et al. 1981; Börner
et al. 1996) and the porosity of a random packing of sphere is
typically 0.36. This yields F3 = 54. Taking Di = 2.45×10−9 m2 s−1
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Figure 6. Comparison between the simplified model developed in Section
2 and the data (relation time from time domain induced polarization and
measured gas permeability) from Tong et al. (2006b, their table 1). We see
that the predictions are accurate inside one order of magnitude over four
decades without the need for free-parameters. The two solid lines parallel to
the 1:1 line correspond to a variation of plus or minus one order of magnitude
with respect to the predicted trend.

as proposed by Leroy et al. (2008) for their pore water composition
(see their table 2), we obtain k ≈ aτ 0 with a = 5 × 10−12 m2 s−1.
This is can be compared to the data reported by Kemna et al. (2005)
who found k ≈ aτ b

0 with a = 3.8 × 10−12 m2s−1 and b = 0.56. We
believe that the discrepancy between the model prediction and the
experimental data results from the inability of the equations derived
above to account well for the true grain size distribution or/and the
possibility of an additional contribution like membrane polarization
(Vinegar & Waxman 1984).

We apply now our model to the data of Scott & Barker (2003).
These authors performed spectral induced polarization measure-
ments using Permo-Triassic sandstones with pore lining clays and
oxyhydroxides. They noted a strong correlation from the pore throat
diameter of their samples, determined from mercury injection mea-
surements, and the main relaxation frequency exhibited by the phase
in the frequency band 1 mHz – 1 kHz. According to them, this was
suggesting that the polarization process responsible for this correla-
tion was occurring in the pore space (possibly involving a membrane
polarization mechanism) and not along the pores. We consider that
the main relaxation frequency is given by f 0 = 1/(2π τ 0). Consid-
ering eqs (12) and (20), the pore diameter is given by

2� =
√

8Di/2π

m(F − 1)

1√
f0

. (26)

The porosity is in the interval 0.124–0.324, which with m =
2 (the default value of the cementation exponent for sandstone,
see Waxman & Smits 1968; Revil et al. 1998 for instance) yields
10 < F < 65. Therefore, 18 < m(F − 1) < 128. We take Di =
2 × 10−9 m2 s−1 as default value as explained above. A comparison
between the model estimates using the bounds derived above for
the formation factor and the experimental data of Scott & Barker
(2003) is shown in Fig. 7. The bounds determined with our model
agree with the data for which the bounds the pore diameter was
independently determined by mercury intrusion measurements.
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Another test we performed in this section concerns the data of
Zisser et al. (2009) performed on tight gas sandstone. This sand-
stone is characterized by relatively broad grain size distribution.
Zisser et al. (2009) inverted the distribution of relaxation time (see
next section). From this distribution, they determined the relaxation
time τ 50, which is the relaxation time at which 50 per cent of the re-
laxation times in the distribution is smaller. Application of eq. (24)
to their datasets using τ 50 as a proxy for τ 0 is shown in Fig. 8.
We see that there is a very strong correlation between the predicted
permeability and the measured permeability (R = 0.97). However
the slope is not correctly predicted. In turn this means that τ 50 is
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Figure 9. Comparison between the simplified model developed in Section
2 and the data from Binley et al. (2005) (R = 0.93).

not the relevant characteristic time to compute permeability when
the distribution of grain size is broad.

The last test is performed with the data from Binley et al. (2005).
They use core samples from the UK Triassic sandstone aquifer from
Eggborough and Hatfield. They performed the following measure-
ments (1) grain size distribution, (2) scanning electron microscope
(SEM) imaging and analysis to determine sample composition, (3)
mercury injection capillary pressure tests to determine pore throat
size distributions and total porosity, (4) gas permeability, (5) cation
exchange capacity (CEC) and (6) pore surface area on intact sub-
samples using nitrogen gas adsorption. For their spectral induced
polarization measurements, the samples were saturated with a pore
water solution at 0.10 S m−1 (at 25 ◦C) with the following con-
centrations in ionic species: C(Cl−) = 0.9 Mol L−1, C(NO3

−) =
11.4 Mol L−1, C(SO4

−) = 0.9 Mol L−1, C(Na+) = 0.9 Mol L−1,
C(Mg2+) = 0.9 Mol L−1, and C(Ca2+) = 5.7 Mol L−1. The perme-
ability is computed with eq. (24) with Di = 2.45 × 10−9 m2 s−1 as
proposed by Leroy et al. (2008). The formation factors are deter-
mined from Archie’s law with m = 1.5, which is suitable for weakly
consolidated sandstone (see above). The comparison between the
predicted and measured permeabilities is shown in Fig. 9 and is
fair.

3 G E N E R A L I Z AT I O N

Real granular media are characterized by a grain size distribution
and therefore by a distribution of the relaxation times. However, few
works have considered the effect of the grain size distribution upon
induced polarization. Carrique et al. (1998) performed a numerical
study of the effect of the polydispersity of suspensions of spherical
particles on their dielectric behaviour, in both the frequency and
time domains, using the model proposed by DeLacey & White for
monodisperse suspensions. They found that both in the frequency
and time domains the predicted behaviour does not differ in any
essential way from the one obtained for a monodisperse suspension
with particle radius close to the volume-averaged mean radius of
the polydisperse system. However, they used a very narrow particle
size distribution that was Gaussian distributed.
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Starting with the models of Fixman and Schwarz, Lesmes &
Morgan (2001) investigated the role of the particle size distribu-
tion of a sandstone upon induced polarization. They found that the
particle size distribution is of paramount importance to model the
low-frequency electrical conductivity of rocks. In the following,
we follow their idea and we develop new expressions to incorporate
the particle size distribution. We will also extend the relationship de-
veloped in Section 2 to estimate permeability to a granular material
with an arbitrary grain size distribution.

3.1 The distribution of relaxation times

We consider below the case of a granular material characterized by
a grain size distribution f (D) where D is a given grain diameter. In
addition, we consider that grains of different mineralogy have very
similar surface conductance, an assumption that is in good agree-
ment with various experimental data (see Revil et al. 1999; Leroy &
Revil 2004). The case discussed in Section 2 above corresponds to
f (D) = δ(D − d0) where δ corresponds to the Dirac distribution.
This grain size distribution is associated with a distribution of re-
laxation times g(τ ). Using the superposition principle, the surface
conductivity is given by:

σS = σ∞
S + (

σ 0
S − σ∞

S

) ∫ ∞

0

g(τ )

1 + iωτ
dτ, (27)

∫ ∞

0
g(τ )dτ = 1. (28)

The integral on the right-hand side of eq. (27) is called the re-
duced polarization by Fuoss & Kirwood (1941) and the spectral
shape function by Yeung & Shin (1991). If g(τ ) reduces to a Dirac
distribution, g(τ ) = δ(τ − τ 0), eq. (27) reduces to the Debye distri-
bution analysed in the previous section, eq. (23).

Eq. (27) means that there is a low-frequency and a high-frequency
value of surface conductivity. The low-frequency value of surface
conductivity is associated with the diffuse layer. This low-frequency
conductivity response should be convoluted by a grain size distri-
bution. The high-frequency value of surface conductivity results
both from the diffuse and Stern layer conductivities and should
be also convoluted by a grain size distribution as shown below.
The transition between low frequencies to high frequencies is not
characterized by a single relaxation time but by the distribution of
relaxation times g(τ ) (Lesmes & Morgan 2001).

We are looking now for a relationship between the distributions
g(τ ) and f (D). The real and imaginary parts of surface conductivity
of the grains are obtained by the following expressions:

σ ′
S = σ∞

S + (
σ 0

S − σ∞
S

) ∫ ∞

0

g(τ )

1 + ω2τ 2
dτ, (29)

σ ′′
S = − (

σ 0
S − σ∞

S

)
ω

∫ ∞

0

g(τ )τ

1 + ω2τ 2
dτ. (30)

We consider that the grain diameter distribution f (D) is normal-
ized,∫ ∞

0
f (D)dD = 1. (31)

We note as h(η) the normalized distribution of the inverse of
the grain diameters, with η being the inverse of the grain diameter
η = 1/D. The two probability density functions f (D) and h(η) are
related to each other by their probability distributions,

h(η) |dη| = f (D)dD. (32)

Eq. (32) means that the probability distribution to find the inverse
of the grain size between η and η + dη is the same as finding the
grain size between D and D + dD. Using |dη| = (1/D2) dD, we
obtain

h(η) = D2 f (D). (33)

We apply now the superposition principle to eq. (19),

σS = 4
∫ ∞

0
h(η)η

[(
�d + �S

) − �S

1 + iωτ

]
dη, (34)

We can replace h(η)ηdη by f (D)d ln D. With 0 < D < +∞ (note
that D is of course bounded by an upper value Dmax that should
be much smaller that the characteristic size of the representative
elementary volume of the granular material that is considered here),
we have 0 < ln D < +∞. Therefore, we obtain

σS = 4
∫ +∞

0
f (D)(�d + �S)d ln D

+ 4
∫ +∞

0
f (D)

(
�S

1 + iωτ

)
d ln D. (35)

As �d and �S characterize the local properties of the electrical
double layer (Fig. 1), they are strictly independent of the grain size
distribution so they can be move out from the two integrals. This
yields

σS = 4(�d + �S)
∫ +∞

0
f (D)d ln D

+ 4�S

∫ +∞

0
f (D)

(
1

1 + iωτ

)
d ln D. (36)

Therefore, the high and low frequencies asymptotic values of
surface conductivities of the porous material are

σ∞
S = 4(�d + �S)

∫ +∞

0
f (D)d ln D, (37)

σ 0
S = 4�d

∫ +∞

0
f (D)d ln D, (38)

which generalize eqs (21) and (22). Eqs (37) and (38) show explic-
itly how the low-frequency and high-frequency asymptotic values
of surface conductivity can be computed from the grain size distri-
bution. From eqs (37) and (38), we have

σ∞
S − σ 0

S = 4�S

∫ +∞

0
f (D)d ln D, (39)

and therefore

4�S = σ∞
S − σ 0

S∫ +∞
0 f (D)d ln D

. (40)

Inserting eqs (37) and (40) into eq. (36) yields

σS = σ∞
S + (

σ∞
S − σ 0

S

) ∫ +∞
0 f (D)

(
1

1+iωτ

)
d ln D∫ +∞

0 f (D)d ln D
. (41)

Comparing now eq. (41) with eq. (27) yields the following
equality:

∫ ∞

0

g(τ )

1 + iωτ
dτ =

∫ +∞
0

(
f (D)

1+iωτ

)
d ln D∫ +∞

0 f (D)d ln D
, (42)

and therefore this implies in turn

f (D)d ln D

Eh
= g(τ )dτ, (43)
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where Eh is the expected value of the probability density function
h(η) (see demonstration in Appendix B)

Eh =
∫ +∞

0
f (D)d ln D. (44)

Integrating eq. (43) over the full range of relaxation times and
grain sizes is consistent with eq. (28) expressing that the distribution
of the relaxation times is normalized. Taking also a delta distribu-
tion for the grain size distribution and for the distribution of the
relaxation times is also consistent. The relationship between the re-
laxation time and the grain diameter is τ = D2/8DS . Differentiating
this equation yields

dτ = DdD

4DS
. (45)

Inserting eq. (45) into eq. (43) and using τ = D2/8DS , we obtain

τg(τ ) = f (D)

2Eh
. (46)

We introduce the function

F(s) = f (d0es/2)∫ +∞
−∞ f (d0es/2)ds

, (47)

∫ +∞

−∞
F(s)ds = 1, (48)

where the variable s is defined by

s = 2 ln

(
D

d0

)
= ln

(
τ

τ0

)
, (49)

ds = 2d ln D = d ln τ, (50)

where d0 is a characteristic grain size (e.g. the median of the grain
size distribution) and τ 0 the associated relaxation time. Therefore
we have

τg(τ ) = F(s), (51)

and we check the property g(τ ) dτ = F(s) ds, the probability to find
the relaxation time between τ and τ + dτ is equal to the probability
to find s between s and s + ds. The function F(s) describes the
grain size distribution with respect to the log of the grain size.
Eqs (47)–(51) provide relationships between the distribution of the
relaxation times g(τ ) and the distribution of the grain diameters
f (D). This is what we were looking for.

Cole & Cole (1941) and Fuoss & Kirwood (1941, their eq. 3)
analysed in depth the special cases where F(s) is a log normal
distribution and a Cole–Cole distribution. These particular func-
tions will be analysed in Section 3.4 because they have practical
applications to interpret experimental data. Indeed, the grain size
distribution is often described in the literature using a log normal
distribution and the interpretation of induced polarization data is
often performed with the Cole–Cole model. We believe that there
is a direct connection here to look for.

3.2 A new equation for permeability

We are now ready to find a new equation for the permeability of
a granular material defined by a given porosity and a grain size
distribution. Using the analysis made in Section 2.2, eq. (12), we
see that the transformation

1

d0
→ Eh ≡

∫ +∞

0
f (D)d ln D (52)

implies that the length scale � can be generalized to give

1

�
= 2m(F − 1)Eh . (53)

In addition, we consider that the formation factor and the ce-
mentation exponent are independent of the grain size distribution
because they depend on the grain shape distribution and the porosity,
for example, from differential effective medium theory or a volume
average of the Nernst–Planck equation. Using eq. (53) in eq. (13)
yields the following equation for the permeability:

k = 1

32m2 F(F − 1)2
E−2

h , (54)

k ≈ 1

72F3
E−2

h . (55)

Note that in the case where the grain size distribution is given
by the delta function f (D) = δ(D − d0), we recover from eqs (53)
and (55) the formula given in Section 2 for � and k. In the case of
a broad distribution of relaxation times, more weight is given to the
smallest grains in agreement with ideas expressed in the literature
(see Berg 1970; Kemna 2000 and Appendix B).

3.3 Special cases

We consider now the special cases of the Cole–Cole and log normal
probability distribution models (see for instance Cole & Cole (1941,
their section VI-C) and De Mey 1974)

F(s)ds = 1

2π

sin [π (1 − α)]

cosh [αs] − cos [π (1 − α)]
ds, (56)

F(s)ds = 1√
2πσ̂

exp

[
−

(
s√
2σ̂

)2
]

ds, (57)

where s = 2 ln (D/d50) (d50 represents the median of the grain
size distribution), α is the Cole–Cole exponent (0 ≤ α ≤ 1, α = 1
corresponds to a Debye model), σ̂ represents the standard deviation
of the Gaussian distribution describing F(s) in eq. (57). In these
two cases, the grain size probability distributions are given by (see
Appendix B),

f (D) = 1

π

sin [π (α − 1)]

cosh [2α ln (D/d50)] − cos [π (α − 1)]
, (58)

f (D) = 1

D
√

2πσ
exp

[
− (ln D − μ)2

2σ 2

]
, (59)

where σ = σ̂ /2 and μ = ln d50. Using eqs (51), (56) and (57), we
get the probability distributions of the relaxation times (Appendix
B)

g(τ )dτ = 1

2π

sin [π (α − 1)]

cosh [α ln(τ/τ0)] − cos [π (α − 1)]
d ln

(
τ

τ0

)
,

(60)

g(τ )dτ = 1√
2πσ̂

exp

[
−

(
ln (τ/τ0)√

2σ̂

)]
d ln

(
τ

τ0

)
. (61)

The question we address below is why the Cole–Cole distribution
fits well the experimental polarization spectra at low frequencies. As
explained by Cole & Cole (1941), the log normal and the Cole–Cole
probability distributions are quite similar when the Cole–Cole ex-
ponent α is between 0.5 and 1 (see their fig. 9). Sedimentary rocks
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have grain size distributions usually described by one or the sum of
two or three log normal distributions. It is therefore not surprising
that the polarization spectra can be fitted by a Cole–Cole distribu-
tion or the sum of several Cole–Cole distributions. This explains
also the success of the Cole–Cole distribution in solving a number
of problems controlled by the grain size distribution like the de-
formation of silica aggregates by pervasive pressure solution at the
grain-to-grain contacts (Revil et al. 2006). However, the particle
size distribution of soils, for instance, has been also described by a
fractal model (Posadas et al. 2001). This implies a very broad dis-
tribution of the relaxation time distribution of such soils that can be
reproduced by the Cole–Cole model, which has tails that are much
longer than the log normal distribution for the Cole–Cole exponent
is comprised between 0 and 0.5.

Another reason for the success of the Cole–Cole model was
noted by Swan (2000) for dielectric spectra. Swan noted that that
circular plot in an Argand diagram are approximated by almost any
logarithmic symmetrical distribution function like the log normal
distribution. Differences appear only at frequencies well above or
well below the relaxation frequency and these frequencies are gener-
ally not investigated, so data are usually missing to discriminate the
Cole–Cole model from other logarithmic symmetrical functions.

This Cole–Cole distribution of relaxation times implies that sur-
face conductivity is described by (see Cole & Cole 1941)

σS = σ∞
S + (

σ 0
S − σ∞

S

) [
1

1 + (iωτ )α

]
. (62)

We consider for simplicity a linear model,

σ ∗ = 1

F
[σ f + (F − 1)σS]. (63)

Therefore, the overall conductivity model follows a Cole–Cole
model,

σ ∗ = σ∞ + σ0 − σ∞
1 + (iωτ )α

, (64)

σ0 = 1

F

[
σ f + (F − 1)σ 0

S

]
, (65)

σ∞ = 1

F

[
σ f + (F − 1)σ∞

S

]
. (66)

Therefore, our analysis provides a theoretical foundation for the
use of the Cole–Cole model to describe the low-frequency behaviour
of the complex conductivity of granular media saturated by a brine.
In addition, the partition coefficient described in Section 2 can be
related to the high and low surface conductivities,

f = �S

�S + �d
= σ∞

S − σ 0
S

σ∞
S

, (67)

and therefore,

σ∞ = 1

F

[
σ f + (F − 1)

σ 0
S

1 − f

]
. (68)

Because f can be computed from a double layer model (see
Leroy et al. 2008 and Leroy & Revil 2009), the model has two
unknowns only, F and σ 0

S , that can be determined from the low and
high asymptotic values of the electrical conductivity. We can also
compute the chargeability M as a function of f . The chargeability
M is defined as

M = 1 − σ0

σ∞
, (69)
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Figure 10. In phase and quadrature conductivity for a alluvium silt sand
sample (sample D1 from Slater & Lesmes 2002b) characterized by a broad
grain size distribution. Note the very flat quadrature conductivity (and there-
fore the phase) in the frequency range 0.01–100 Hz due to the broad grain
size distribution. The lines are guides for the eyes. Usually this type of be-
haviour is modelled by a constant phase angle (CPA) model also called the
Drake model.

and 0 < M < 1 as σ 0 < σ∞. We define the Dukhin number at low
frequency as Du0 = σ 0

S/σ f and therefore we have

M = (F − 1) f Du0

1 − f + (F − 1)Du0
. (70)

This implies that at very low salinities, the chargeability can be
used to compute the value of the partition of the counterions between
the Stern and the diffuse layers. This is another new and important
result of this work. Taking Du0 = 1 (surface conductivity equal to
bulk pore water conductivity at low salinity, see a complete analysis
in Leroy & Revil 2009), f = 0.84 (e.g. the value of the partition co-
efficient reported by Jougnot et al. 2009 for the Callovo–Oxfordian
clay-rock), we obtain M ≈ f = 0.84 in good agreement with the
induced polarization estimates of M obtained by Ghorbani et al.
(2009) for the same material.

3.4 Comparison with experimental results

In this subsection, we make various tests of our model to the case that
is opposite to the case discussed in Section 2 that was characterized
by a delta function in the particle size distribution. We consider
now the case of a very broad grain size distribution. According to
our model, this would yield a broad distribution of relaxation times
and this explains the constant phase angle model (called the CPA
or Drake model) usually used to describe the polarization spectra in
such a situation (see Fig. 10 and Vinegar & Waxman 1984; Börner
et al. 1993; Slater & Lesmes 2002b). In this case, the phase does
not exhibit a well-defined relaxation time, like in Fig. 3, but a broad
range of relaxation times.

The first test is related to the data reported by Slater & Lesmes
(2002b, their fig. 5). In their case, the imaginary part of the con-
ductivity shows a very weak dependence with the frequency, and
according to our model, this is an indicative for a very broad
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Figure 11. Comparison between the prediction of our model (the plain line
with the slope −1) and the data reported by Slater & Lesmes (2002b).

distribution of grain size consistent with the use of sand clay mix-
tures. Using eqs (30), (37), (38), and (39), the quadrature conduc-
tivity is given by,

σ ′′ ∼ − (F − 1)
(
σ 0

S − σ∞
S

)
F

≈ 4�S Eh, (71)

as F >> 1. Therefore, the square of the inverse of the quadrature
conductivity is proportional to,

1/(σ ′′)2 ∼ E−2
h . (72)

As the permeability k is proportional to the product F−3 E−2
h ,

the product kF3 should be proportional to 1/(σ ′′)2. For the sand clay
mixtures reported by Slater & Lesmes (2002b), this is indeed the
case as shown in Fig. 11.

A second test is performed with the dependence of the imaginary
conductivity σ ′′ with the salinity. Slater & Lesmes (2002b, their
fig. 2) showed that σ ′′ does not change with salinity at salinities
above 0.02 mol L−1. Below this salinity, σ ′′ decreases with salinity.
According to our model, the salinity dependence of σ should be
proportional to the salinity dependence of the surface conductance
�S . The salinity dependence of the total specific surface conduc-
tance (including the contribution from the diffuse layer) has been
investigated by Revil et al. (1999, their fig. 5). In Fig. 12, we have
reported estimates of the specific surface conductivity of the Stern
layer as a function of the salinity using two datasets. As discussed
by Revil et al. (1999), this behaviour is consistent with an electrical
double layer model reported in Appendix C with reasonable values
of the model parameters. This implies in turn that the quadrature
conductivity can be used to diagnose the dependence of surface con-
ductivity with the ionic strength and composition of the pore water.

We consider now the dependence of the quadrature conductivity
with a mean grain size. The integral involved in the modelling of
the quadrature conductivity favours the small grains and neglect the
coarser grains depending of course on their overall distributions. To
understand this point, let’s assume that the grain size distribution is
purely bimodal, with

f (D) = f f δ(D − D f ) + fcδ(D − Dc), (73)

f f + fc = 1, (74)
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Figure 12. Determination of the salinity dependence of the specific surface
conductivity contribution associated with the Stern layer. The black circles
are determined using the data from Watillon & de Backer (1970) removing
the DC contribution associated with the diffuse layer. The grey circles are
determined from Slater & Lesmes (2002b, their fig. 2). The limiting value of
the specific surface conductivity at high salinity is due to the close packing
of the counterions on the mineral surface. The solid line corresponds to the
model described in Appendix B.

where ff is the fraction of fine grains of diameter Df and f c is the
fraction of coarse grains of diameter Dc. With such a distribution,
we have

Eh =
∫ +∞

0
f (D)d ln D = f f

D f
+ fc

Dc
≈ f f

D f
, (75)

as 1/Df � ( fc/ ff )(1/Dc). Therefore, the integral on the right-
hand side of eq. (75) gives more weight to the finer grains. A
complementary treatment of the problem is proposed in Appendix
B for log normal and Cole–Cole grain size distributions.

Slater & Lesmes (2002b) used sand clay mixtures for which they
used the effective grain diameter d10 at which 10 per cent of the
sample is finer. If we assume that this average grain diameter is a
good approximation of the grain size distribution integral involved
in our modelling, we consider

1

d10
= ξ Eh, (76)

where ξ is a dimensionless normalizing constant (an exact expres-
sion of this constant is given in Appendix B when the grain size
distribution is given by a log normal distribution). For a binary mix-
ture (see above) like a sand clay mixture, eqs (75) and (76) yields
ξ = 1/ ff . Using eq. (71), we have

σ ′′ = 4�S

ξd10
. (77)

For the samples investigated by Slater & Lesmes (2002b), we
have an average formation factor F of 5 ± 1. Taking �S = 4 ×
10−9 S (Bolève et al. 2007), and the correlation obtained by Slater &
Lesmes (2002b, their fig. 8), we obtain σ ′′ (1 Hz) = a/d10 with a =
5 × 10−10 S and d10 expressed in metres. The data of Fig. 13 yields
the following value of the normalizing constant: ξ = 4�S/Fa =
32. Using ff = 1/ξ , this implies that 3 per cent of the grain size
distribution is made of fine particles. In addition, we can use eqs
(51) and (69) to compute the permeability,

k ≈ ξ 2d2
10

72F3
. (78)
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Figure 13. Relationship between the quadrature conductivity and the grain
diameter d10 (modified from Slater & Lesmes 2002b). The line corresponds
to the linear trend given by σ ′′(1 Hz) = a/d10 with a = 5 × 10−10 S and
the characteristic grain diameter d10 expressed in meter (R2 = 0.83).
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independently measured. The predicted permeability are based on the value
of ξ determined from the quadrature conductivity (see main text).

Combining eqs (77) and (78) yields also a direct relationship
between the permeability and the quadrature conductivity,

k ≈ (�S)2

4.5F3
(σ ′′)−2. (79)

The application of this relationship to the data displayed in Fig. 11
yields �S = 2 × 10−9 S, which is consistent with the data displayed
also in Fig. 12. A comparison between the predicted permeability
using eq. (78) and the measured permeability measured by Slater &
Lesmes (2002b) is shown in Fig. 14. We found a good agreement
between our model and the data.

In addition, a comparison between eq. (77) and eq. (68) explains
very well the linear trends observed by Vinegar & Waxman (1984)
between the quadrature conductivity σ ′′ and the in-phase conduc-

tivity of the solid phase σ ′ of shaly sandstones with kaolinite, il-
lite, and smectite. According to our model, we should have σ ′′ =
(1 – f ) σ ′. Above 1 S m−1, the data by Vinegar & Waxman (1984)
yield f = 0.98. This means that most of the counterions are located
in the Stern layer at high salinities. This is consistent with the fact
that the partition coefficient f increases with the salinity (see Fig. 2)
and the fact that at high salinities the counterions of the diffuse layer
are closely packed against the mineral surface. Indeed, the size of
the diffuse layer is controlled by a length scale called the Debye
length, which decreases when the salinity increases until the point
where all the counterions are packed against the mineral surface
(e.g. Revil & Glover 1997). Using eq. (70), this means that at high
salinities (above 1 S m−1), we have M = 1.

4 R E L AT I O N T O S U R FA C E A R E A

The relationship between the phase or the imaginary component
of the complex conductivity and the specific surface area has been
widely documented in the literature (e.g. Börner & Schön 1991). If
all the grains have the same size, the surface area per pore volume
ratio is defined by

Spor = S

Vp
= a

1

d0
, (80)

where S is the surface area between the solid phase and the water
phase, Vp is the pore volume, and a is a constant that depends on
the packing of the grains (for a cubic packing, a is close to 6, for
instance). This model can be generalized for a general grain size
distribution by

Spor = aEh . (81)

Now using eq. (71), for instance, we get a direct relationship
between the quadrature conductivity and the specific surface area,

σ ′′ = 4�S Spor

a
. (82)

This formula can be compared with the formula derived empiri-
cally by Slater & Lesmes (2002) Spor = bσ ′′ with b = 2 × 109 S−1.
According to our model, we have b = a/(4�S). Using �S = 2 ×
10−9 S implies a = 16, which is a reasonable value.

5 D I S C U S S I O N

In this section, we provide a response to the following three ques-
tions: (1) what are the limitations of the present model? (2) what is
the effect of a multicomponent electrolyte with respect to the case
of 1:1 electrolyte (like NaCl or KCl) discussed above? and (3) how
this model could be used for a permeability tomography?

(1) Regarding the limitations of the present model, it is clear
that the present model is valid for granular media without the pres-
ence of fractures. The solid phase needs to be discontinuous to
observe a polarization associated with the Stern layer. This includes
sands, silts, clean and clayey sandstones. Our model would not
work for rocks characterized by a continuous solid phase for which
there is no polarization of the Stern layer. Limestone does not ex-
hibit Stern layer polarization because, most of the time, it imposes
conditions to the pore water that are close to its isoelectric point
for which the total charge of the mineral surface is close to zero
(Pokrovsky et al. 1999). In addition, our approach would not work
if there are other polarization mechanisms that would hide the po-
larization of the Stern layer like those associated with redox effects
usually characterized by non-linear induced polarization effects.
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Another limitation of our model is related to the use of a linear
conductivity model while a non-linear conductivity model should
be used at low salinities. The linear model was used because it
yields easily to analytical solutions for the in-phase and quadrature
conductivities. However, a non-linear model, for example, based on
differential effective medium theory, would be more accurate at low
salinities.

Finally, the grain size distribution can be difficult to evaluate. For
instance, the roughness of the grains can be responsible for polar-
ization at relatively high frequencies depending on the topology of
the pore water/mineral interface (see Leroy et al. 2008). Cemented
grains can behave as coarse grains. These two effects may explain
why the distribution of relaxation times seems always broader than
implied from a simple estimate of the grain size distribution. Mem-
brane polarization will need also to be investigated in detail as it
may be present in the induced polarization data but not exactly at
the same frequencies as the polarization associated with the elec-
trical double layer. Indeed, the diffusion coefficient arising in the
membrane polarization mechanism is the mutual diffusion coeffi-
cient of the salt, which is distinct to the diffusion coefficient of the
counterions in the Stern layer. Because the relaxation time depends
on the diffusion coefficient, distinct diffusion coefficients produce
distinct relaxation times. Combining Stern layer and membrane po-
larization mechanisms may be responsible also for the broadening
of the distribution of the relaxation times.

(2) The second question is also important because real pore waters
are multicomponent electrolytes. Computing all the distributions of
the ions in the Stern layer, the diffuse layer, and the macropores is
a difficult task but we know how to handle this problem (see Leroy
et al. 2007 for an example using the Callovo–Oxfordian clay-rock).
The question is how the presence of various counterions in the Stern
layer may affect the induced polarization spectra. In Appendix D, we
have generalized the analysis made in Section 2 to a multicompo-
nent electrolyte with various ions sorbed in the Stern layer. In this
model, the presence of various counterions broadens the spectra.
This has many implications on the way the experiments should be
also made in the laboratory or interpreted. It is customary in the liter-
ature to find experiments performed with demineralized water as the
saturating fluid. Usually, this creates some dissolution of the min-
eral surface (e.g. Leroy et al. 2008). This dissolution yields various
types of ions to be present in the pore water solution. We advocate
here that experiments should be performed with a background elec-
trolyte dominated by a single cation. A multicomponent electrolyte
may be responsible for broadening the distribution of the relaxation
times.

(3) With the assumptions discussed above, we think that the the-
ory developed in this paper could be used to develop a permeability
tomography approach based on spectral induced polarization. This
would imply to divide the system in a sum of individual cells and
to compute for example the Cole–Cole parameters at each cell as
shown for instance by Loke et al. (2006). Then, the present theory
could be used to invert the permeability of each cell. We plan to in-
vestigate such a problem in a forthcoming work. Such an approach
could be very useful to monitor for example changes in permeabil-
ity associated with plugging of the pores during bioremediation or
internal erosion in earth dams and should be combined also with
self-potential measurements. Indeed, self-potential has appeared re-
cently as a powerful tool to image ground water flow associated with
pumping tests (Straface et al. 2007; Jardani et al. 2009; Malama
et al. 2009a,b), at the scale of catchments (Linde et al. 2007), in
geothermal fields (Jardani et al. 2008; Jardani & Revil 2009), and
in embankment dams (Bolève et al. 2009).

6 C O N C LU S I O N S

The following concluding statements result from this work. (1) The
Stern layer has no contribution to DC-surface conductivity because
the back-diffusion of the counterions in the Stern layer prevents
a DC contribution to the Stern conductivity. (2) We speculate (as
there is no definitive proof) that the value of the mobility of the ions
in the Stern layer is close to the value of the mobility of the ions
in free water except if the counterions have a strong affinity with
the mineral sites. Such an assumption seems consistent with the
available experimental data but should be carefully evaluated in fu-
ture works. (3) If all the grains have the same size, the permeability
can be computed from the relaxation time of induced polarization
and to the cube of the electrical formation factor. The mean re-
laxation time is related to the square of the grain diameter. (4) In
the general case of a distribution of grain sizes, the permeability is
still inversely proportional to the cube of the formation factor and
to the expectation of the probability distribution of the inverse of
the grain size. The grain size distribution is related to the distribu-
tion of the relaxation times determined from induced polarization
under the condition that the polarization of the Stern layer is the
dominant polarization mechanisms in the investigated frequency
band. (5) For a very broad grain size distribution, the permeabil-
ity can be computed from the formation factor and the quadrature
conductivity, which can be nearly frequency-independent. (6) The
dependence of the quadrature conductivity and relaxation time with
the specific surface area are also explained by our model. (7) A the-
oretical justification can be given to the Cole–Cole model widely
used to fit spectral induced polarization data based on the fact that
the Cole–Cole probability distribution can fit the grain size distribu-
tion. (8) Membrane polarization has been neglected. However, the
importance of this mechanism needs to be further assessed and the
approach of Vinegar & Waxman (1984) could be used to merge
the Stern layer contribution with the membrane polarization contri-
bution into a unified model of low-frequency polarization.
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Hördt, A., Blaschek, R., Kemna, A. & Zisser, N., 2007. Hydraulic conduc-
tivity estimation from induced polarisation data at the field scale—the
Krauthausen case history, J. appl. Geophys., 62, 33–46.

Jardani, A. & Revil, A., 2009. Stochastic joint inversion of temperature and
self-potential data, Geophys. J. Int., 179(1), 640–654, doi:10.1111/j.1365-
246X.2009.04295.x.
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A P P E N D I X A : D E R I VAT I O N O F T H E
WA X M A N A N D S M I T S E Q UAT I O N

We consider a two-phase porous material for which the DC electrical
conductivity σ 0 is given by a simple phase average of the conduc-
tivity of the fluid saturating the pores σ f and the conductivity of the
solid phase σ 0

S

σ0 = φσ f + (1 − φ)σ 0
S . (A1)

However this equation is not consistent with Archie’s law

lim
σ 0

S →0
σ0 = 1

F
σ f = φmσ f . (A2)

In addition, we can interpret the inverse of the formation factor as
an effective porosity as discussed by Revil & Cathles (1999). This
effective porosity is often called the mobile porosity in reactive
transport modelling and the difference (φ – 1/F) corresponds to
the so-called immobile porosity. The porosity of the simple (and
somehow naive) phase average in eq. (A1) should be therefore
replaced by the inverse of the formation factor,

σ0 = 1

F
σ f +

(
1 − 1

F

)
σ 0

S , (A3)
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and now eq. (A3) is consistent with eq. (A2). Algebraic manipula-
tions of eq. (A3) yields

σ0 = σ f

F
[1 + (F − 1)Du0] , (A4)

Du0 = σ 0
S

σ f
, (A5)

where Du0 is a dimensionless parameter called the Dukhin number
in honour of the great Russian electrochemist S. S. Dukhin who
pioneered the study of surface conductivity in colloidal science
(Lyklema, 1995). This dimensionless number is defined as the ratio
of the solid to fluid conductivities. In the case of a granular material
with insulating grains coated by the electrical double layer, the
Dukhin number can be related to the excess of charge per unit
volume by (Bolève et al. 2007)

Du0 = 4�d

d0σ f
= 2

3

(
φ

1 − φ

)
β(+) Q̄V

σ f
, (A6)

where β (+) is the mobility for the counterions in the diffuse layer
(see Section 2). At high porosity, we can now demonstrate that eqs
(A4) to (A5) yield a Waxman and Smits-type equation (Waxman
& Smits, 1968). At high porosity and for a granular material, the
formation factor is given from the effective medium theory (Sen
et al. 1981) by F = φ−3/2, which is an Archie-type relationship
with a cementation exponent of 1.5. A Taylor expansion of the
previous Archie’s law at high porosities yields

F = 1 + 3

2

(
1 − φ

φ

)
+ · · · , . (A7)

Inserting eqs (A7) and (A6) into (A4) results in the following
Waxman and Smits-type equation,

σ0 = 1

F
(σ f + βS QV ), (A8)

where βS = β (+)(1 − f ), f being the fraction of the counterions
located in the Stern layer. Revil & Linde (2006) obtained also eq.
(A8) using a volume-averaging method. This means that eq. (A8)
seems to be valid in a wide range of porosity. However, this equation
is only valid at relatively high salinities as discussed by Bernabé
& Revil (1995) who performed numerical simulations of the DC
electrical conductivity with a pore network model.

A P P E N D I X B : P E R M E A B I L I T Y O F A
B ROA D G R A I N S I Z E D I S T R I B U T I O N

We consider first the log normal distribution for the probability
density F(s)∫ +∞

−∞
F(s)ds = 1, (B1)

F(s)ds = 1√
2πσ̂

exp

[
−

(
s√
2σ̂

)2
]

ds, (B2)

where s = 2 ln (D/d50) (d50 represents the median of the grain size
distribution).

In this Appendix, we are interested to estimate the integral

Eh =
∫ +∞

0
f (D)d ln D, (B3)

with the probability density function f (D) given as a log normal
distribution. Replacing s by s = 2 ln (D/d50) in eq. (B2), we have

f (D) = 1

D
√

2πσ
exp

[
− (ln D − μ)2

2σ 2

]
, (B4)

∫ +∞

0
f (D)dD = 1, (B5)

with σ = σ̂ /2 and μ = ln d50 are the standard deviation and the
mean of the grain diameter natural logarithm, respectively, and d50

represents the median of the grain size distribution. The median d50

is used as a measure of the average particle diameter size for the
granular material. The standard deviation represents a measure of
the dispersion about the mean grain diameter for a given distribu-
tion. We first demonstrate that Eh is nothing else that the expected
value of the distribution h(η) with η being the inverse of the grain
diameter η = 1/D (see Section 3.1). Indeed, Eh is defined by

Eh ≡
∫ +∞

0
ηh(η) |dη| . (B6)

Using h(η)|dη| = f (D)dD and η = 1/D in eq. (B6) yields eq.
(B3). Therefore, eqs (B3) and (B6) are formally equal to each other.

Integrating eq. (B3) with eq. (B4) yields

Eh = exp

(
1

2
σ 2 − μ

)
, (B7)

Eh = 1

d50
exp

(
1

2
σ 2

)
. (B8)

Inserting eq. (B8) into the expression of the permeability, eq.
(55), we obtain

k = 1

72
φ3md2

50 exp(−σ 2). (B9)

When σ = 0, we recover the formula obtained for a delta distri-
bution in the grain size distribution (eq. 14, for instance). Eq. (B6)
can be directly compared to the empirical formula derived by Berg
(1970)

k = 1

12
φ5.1d2

50 exp (−�ln D) , (B10)

where �ln D is a permeability reduction factor corresponding to the
measure of the spread of the grain size distribution on a log scale
(see also Kemna, 2000). To our knowledge, this idea to scale the
permeability with an exponential function of the standard deviation
of the grain size distribution was first proposed by Krumbein and
Monk (1942). Eq. (B9) is also consistent with the analysis made
by Mash and Denny (1966) regarding the influence of the median
and the standard deviation of the grain size distribution upon the
permeability. Note also that the sorting coefficient, defined as S0 =
(D25/D75)1/2 can be directly related to σ by S0 = exp (0.674σ ). A
very poorly sorted sand is defined by S0 = 4.2, which means that
σ = 2.13, and therefore the permeability reduction factor ϑ = exp
(−σ 2) in eq. (B9) is equal to exp(−4.5), a very low value. So our
model can be used to analyse quantitatively how sorting influences
permeability.

Assuming a log normal grain size distribution, the parameter ξ

defined by eq. (76), can now be defined by

ξ = d50

d10
exp

(
−1

2
σ 2

)
, (B11)
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and therefore ξ is proportional to a coefficient of uniformity, which
is rigorously defined in soil sciences as U = d60/d10 where coeffi-
cient d60 is the value of the particle diameter such that 60 per cent
of the distribution is finer than this diameter and d10 is the value of
the particle diameter such that 10 per cent of the distribution is finer
than this diameter (Mash & Denny 1966).

We consider now the case of a Cole–Cole distribution

F(s)ds = 1

2π

sin [π (1 − α)]

cosh [αs] − cos [π (1 − α)]
ds. (B12)

It follows that

f (D) = 1

π D

sin [π (1 − α)]

cosh [2α ln (D/d50)] − cos [π (1 − α)]
, (B13)

∫ +∞

0
f (D)dD = 1. (B14)

In the case of a Cole–Cole distribution, getting an analytical
solution for Eh is a much more difficult task than for the log normal
distribution. Using the change of variables x = D/d50, Eh is given
by

Eh = 1

d50

sin[π (1 − α)]

π

∫ ∞

0

dx

x2 [cos(2α ln x) − cos[π (1 − α)]]
.

(B15)

With the additional assumption that α > 1/2, we can find an ap-
proximate solution of the integral involved in eq. (B15) using a
polynomial expansion of the integrand. This yields

Eh ≈ 1

πd50

{
2 sin[π (1 − α)]

(2α − 1)
+ a3α

3 + a2α
2 + a1α + a0

}
,

(B16)

with a0 = −8.9971, a1 = 26.8834, a2 = −20.8123 and a3 = 6.0676.
We can first check that if α = 1, the Cole–Cole model should be
equal to a Delta distribution and indeed taking α = 1 in (B16) yields
Eh = 1/d50 (the expectation Eh is equal to the inverse of the mean
of the grain diameter distribution).

A P P E N D I X C : T H E C O N D U C TA N C E
O F T H E S T E R N L AY E R

We consider that the sorption of sodium in the Stern layer on a silica
grain can be represented by the following reaction:

> SiOH0 ⇐⇒ > SiO− + H+, (C1)

> SiOH0 + Na+ ⇐⇒ > SiO−Na+ + H+, (C2)

where the equilibrium constants are defined by

K(−) = �0
SiO−

[
H+]0

�0
SiOH

, (C3)

KNa = �0
SiONa

[
H+]0

�0
SiOH

[
Na+]0

, (C4)

where �0
i is the surface concentration of species i in the Stern

layer and K(−) = 10−7.4 at 25 ◦C. Fitting an adsorption isotherm
and solving the equation of the electrical double layer, Revil et al.
(1999) found that KNa = 10−3.25 at 25 ◦C and pH = 6. At pH =
6, we can simplify the formula derived by Revil et al. (1999) to
model the Stern layer conductivity as a function of the salinity Cf .
We obtain

�S = eβ(+)�
0
S

KNaC f

10−pH + KNaC f
, (C5)

where the total site density �0
S is typically equal to five sites nm−2.

This yields e �0
S = 0.8 C m2. Using these values and reasonable

values for the mobility of the counterions, we can compute the
dependence of the specific surface conductance of the Stern layer
as a function of the salinity.

A P P E N D I X D : G E N E R A L I Z AT I O N T O A
M U LT I C O M P O N E N T E L E C T RO LY T E

The equations of the main text have been developed for a binary
symmetric 1:1 electrolyte. These equations can be however general-
ized to a multicomponent electrolyte. Eq. (19), for a 1:1 electrolyte,
can be expressed more explicitly as

σS = 4

d0

(
�d + eβ(+)�

0
(+)

) − 4

d0

eβ(+)�
0
(+)

1 + iω
(

ed2
0

8kb Tβ(+)

) , (D1)

where �0
(+) represents the fraction of counterions sorbed in the Stern

layer per unit surface area. Eq. (D1) can be easily generalized to a
multicomponent electrolyte

σS = 4

d0

(
�d +

Q∑
i=1

eβi�
0
i

)
− 4

d0

Q∑
i=1

eβi�
0
i

1 + iωτ 0
i

. (D2)

τ 0
i = ed2

0

8kbTβi
, (D3)

where �0
i represents the fraction of counterions of species i sorbed

in the Stern layer per unit surface area. These parameters can be
obtained from a multicomponent triple layer model (e.g. Leroy et al.
2007).

Eq. (D2) implies that different relaxation processes may over-
lap in the frequency domain because of the different mobilities
of the counterions located in the Stern layer resulting in different
main relaxation time constants. The result will be a broader disper-
sion of the electrochemical polarization in the frequency domain.
Therefore, performing experiments at ionic strengths with a multi-
component electrolyte does not produce the same spectrum as using
a 1:1 dissociated salt at the same electrical conductivity. Interpret-
ing therefore induced polarization data with a simple model valid
for a 1:1 electrolyte may be grossly wrong as well as the estimate
of the resulting grain size distribution from the distribution of the
relaxation times.

C© 2010 The Authors, GJI, 181, 1480–1498

Journal compilation C© 2010 RAS


