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M u l t i m o d e  S H - w a v e s  
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Abstract--We present an efficient scheme to compute high-frequency seismograms (up to 10 Hz) 
for SH-waves in a horizontally stratified medium with the mode summation method. The formalism 
which permits the computation of eigenvalues, eigenfunctions and related integral quantities is discussed 
in detail. Anelasticity is included in the model by using the variational method. Phase velocity, group 
velocity, energy integral and attenuation spectra of a structure enable the computation of complete 
strong motion seismograms, which are the basic tool for the interpretation of near-source broad-band 
data. 

Different examples computed for continental structures are discussed, where one example is the 
comparison between the observed transversal displacement recorded at station IVC for the November 4, 
Brawley 1976 earthquake and synthetic signals. In the case of a magnitude M L = 5.7 earthquake in the 
Friuli seismic area we apply the mode summation method to infer from waveform modeling of all three 
components of motion of observed data some characteristics of the source. 

Key words: Modal summation, broad band, Love waves, anelasticity. 

I. Introduction 

The mode summation method has been used (SWANGER and BOORE, 1978; 
PANZA, 1985; PANZA and SUHADOLC, 1987) to model the response of a flat, layered 
earth since Thomson and Haskell (T-H) papers appeared (THOMPSON, 1950; 
HASKELL, 1953). For the Rayleigh case, KNOPOFF (1964) proposed a modification 
of the initial T-H scheme which avoids a loss-of-precision intrinsic in the original 
formulation. This approach finally permitted the automatic computation of broad- 
band synthetic seismograms for P - S V  waves (e.g., PANZA, 1985), which are 
complete in a given frequency-phase velocity window. 

This paper is the expansion to SH-waves of the algorithm developed by PANZA 
(1985) and PANZA and SUHADOLC (1987) for P - S V  waves. The loss-of-precision 
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does not occur in the SH-wave case, while most of the other features of the P - S V -  
and SH-computations are practically equivalent and transposable. A first-order 
approximation of the anelasticity is applied including both Futterman's results 
based on causality analysis (FUTTERMAN, 1962) and considerations on variational 
methods (TAKEUCHI and SAITO, 1972; SCHWAB and KNOPOFF, 1972). This ap- 
proach allows consideration of anelastic media characterized by Q as low as about 
20. The attenuation effects obtained with this technique may be in error of about 
0-20 percent in comparison with the exact method (SCHWAB, 1988; SCHWAB and 
KNOPOFF, 1971, 1972, 1973). 

The "mode-follower" procedure and structure minimization as described by 
PANZA and SUHADOLC (1987) can be used in the SH-case. This approach permits 
the calculation of "complete" synthetic seismograms with at least three significant 
figures, as long as the distance to the source is greater than the wavelength (PANZA 
et al., 1973). The seismograms computed in this way contain all the phases whose 
phase velocities are smaller than the S-wave velocity of the halfspace terminating 
the structural model. 

The seismic source is introduced using BEN-MENAHEM and HARKRIDER'S 
formalism (1964) while time duration is available through a convolutive model 
(BEN-MENAHEM, 1961). 

2. Computation of  Eigenvalues 

For the multimode surface-wave eigenvalue computations we make use of 
SCHWAB and KNOPOFF'S (1972) notation. The density-depth and velocity-depth 
distributions in the earth are approximated with a structure composed of a series of 
flat homogeneous layers. Then the dispersion function can be written as the 
modified product for layer-matrices (SCHWAB and KNOPOFF, 1972): 

FL(~, c) = b~- b,_ t - b ~ _ 2 " . . ,  b~ (1) 

where n is the number of layers, including the lower halfspace. In equation (1) b, 
is given by: 

b. = (s, - 1 )  

b. = (0, - 1) 

b.  = ( 1 ,  0) 

if the halfspace is solid 

if the halfspace is liquid 

if the half space is rigid 

(2) 

For the definition of the quantity s, see Eqs. (4). 
The mathematical solution of the surface wave propagation allows two types of 

waves in the solid halfspace, exponentially increasing and decreasing with depth. To 
avoid infinite values of the solution, the coefficient of the exponentially increasing 
wave in the halfspace must vanish. 
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If the halfspace is thought to be liquid, the deepest interface is at the analogy of 
the mantle-core boundary Introduction of a rigid lower halfspace results in the 
locked mode approach (HARVEY, 1981). Then the halfspace becomes a perfect 
reflector and eigenvalues of the normal modes change by varying the depth of the 
half space. 
b m (0 < m < n) is given by: 

bm= I cos Qm 

k / * , .  �9 rn,~ �9 s i n  Qm 

bm 

b, ,= I1 
0 

In the expression (3) 

P~ 
a~ 
O) 

cosh Q* 

-#m " r L  ' sinh Q* 

co .a,. 1 /-tin �9 c 

1 

sin Qm ] 

~A m �9 rCm 
COS Q m  

sinh Q* 

//,n " r ~  

cosh Q* 

if c > fl,, 

if c<f lm (3) 

if c=fl,, , .  

is the rigidity of the m-th layer, 
is the S-wave velocity of the m-th layer, 
is the density of the m-th layer, 
is the thickness of the m-th layer, 
is the angular frequency, 
is the phase velocity. 

Moreover, 

((L)2)I/2 1 rfl,~ = - -  1 

Q, =o~ .r~,, . d ~ =  k .r~,, .d~ 
C 

q = -  ) 

Q* o9 " r'~ . d,~ = k . r L . cl~ 
C 

( , = - ~ . .  I \F . )  ) 

where k is the wavenumber. 

if C>flm 

if c<f l , ,  

(4) 
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The modified matrix product of bm and bin_ 1 in equation (1) is defined as 
follows: 

f ( bm) j l "  (bin 1)lp if ( j  +p)  is even [b,. bin_ 1]jp m - t  

~ ( - 1 )  j§ 1)Zp if ( j + p )  is odd. 

Seeking eigenvalueg (i.e., for a given phase velocity seeking the pulsation co) 
requires the determination of the roots of the dispersion function. It can be done by 
root-bracketing and root-refining, according to a procedure described by SCHWAB 
and KNOPOFF (1972). This procedure is only necessary at the beginning of each 
mode. For all other points, the phase velocity can be estimated by cubic extrapola- 
tion and a root-refining procedure in the F-c plane (PANZA, 1985; PANZA and 
SUHADOLC, 1987). 

Two kinds of overflow problems can occur. The first kind of overflow can 
appear when Q* has a large absolute value. Then the calculation of cosh(Q*) and 
sinh(Q*) is prevented. In these cases, Q* has always negative values and we can 
assume that the following approximations hold: 

cosh(Q*) = exp( - Qm*) 

sinh(Q*) -- - exp( - Q*). 

In the matrix product (1) exp(-  Q*) can be factorized and finally set equal to one, 
since only the roots of the dispersion function are of interest. This operation also 
saves computation time. In analogy with the P - S V  case (SCHWAB et al., 1984), we 
call it the "single-layer" overflow control. 

The second kind of overflow can appear when the whole matrix product (1) is 
computed with a phase velocity distant from the root. In this case a normalization 
procedure is used to prevent overflow: for each product the resulting 1 x 2 matrix 
is divided by the greatest absolute value of the matrix itself (ScHwAB and 
KNOPOFV, 1972). In analogy with the P - S V  case (SCHWAB et al., 1984), this is 
called the "multilayer" overflow control. 

To handle realistic earth structural models, the computation scheme must 
allow for numerous layers in order to model possible gradients in the physical 
properties. Such gradients can be approximated by a sequence of thin layers. An 
optimized efficiency in the computations for such structures requires a mode 
follower and a structure minimization procedure, as described by PANZA and 
SUHADOLC (1987). 

The structure minimization procedure is relevant to avoid computations in that 
part of the structure where the eigenfunction vanishes. It consists of an algorithm 
that keeps only the upper part of the structure for the computation, where the 
eigenfunction is not vanishing. This prevents a possible overflow in the calculation 
of eigenfunctions and saves computer time. Overflow can occur because the root is 
never exact and a residue remains in the exponentially increasing part of the 
downgoing wave. 



Vol. 136, 1991 Synthetic Seismograms for SH-waves 533 

To find the minimum of the eigenfunction above the part of the structure where 
overflow problems may occur, the function Em is used. This quantity is defined as 
follows: 

Em =Pro " (Vm~ 2 (5 )  
\Vo/ 

where Vm is the displacement at the m-th interface, Pm is the density of the m-th 
layer and Vo is the displacement at the surface. 

The maximum depth of penetration of the considered mode corresponds to the 
deepest minimum of Era. The layers below the minimum can be discarded, whereas 
the uppermost of them define the terminating halfspace. 

Generally modes are very close to each other. This creates problems in following 
an individual mode in the phase veloci ty--frequency space and in distinguishing it 
from the neighbouring modes. The mode follower provides an efficient way to 
distinguish individual modes. It is based on the fact that for a given mode, the sign 
of OF/Oc is constant, whereas in going from a mode to the next sign changes. This 
condition, combined with possible values of the phase velocity at a given frequency, 
recognizes an eventual jump to a neighbouring mode. 

3. Computation of Eigenfunctions 

With the geometry shown in Figure l, the computation of the eigenfunctions at 
the layer interfaces can be performed as follows (see e.g., SCHWAB, 1970): 

V m ] = COS Qm 

(az)m - k  "#m " rein " sin Qm 

sinQm ] . [  Vm 1 ] if C > fl m 
k " #m " rBm (~z)m 1 

COS Qm 

E T I  s nh~ I'E Vm ' I if Vm = cosh Q* k �9 #m �9 r~ m (o-z)m-1 

(Crz)m k '#m "r~,. �9 sinh Q* cosh Q* 

 m-1 ] 
if c = f l ~  

where v~ is the displacement and ( a z )  m the stress at the interface m. Notice that: 

7) = iov .  

These computations are performed using the initial values (Vo, (az)o) = (1, 0) at the 
free surface. 
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Figure 1 
Coordinate system and geometry for the Love wave problem. The numbers denote layers, while the 

numbers in brackets denote interfaces. 

As far as the phase velocity has been computed with high accuracy, the problem 
with "multilayer" overflow should not occur. However, "single-layer" overflow has 
to be expected because it depends on the thickness of the layer. By splitting each of 
the thickest layers in a series of equally thin layers this problem can be avoided. 

4. Group Velocities 

For a general background on the subject we refer to SCHWAB and KNOPOFF 
(1972). The group velocities are computed using the formula: 

c 

u -  dc co" (7) 
1 . . . .  

doJ e 

The ratio dc/do~ is calculated according to the implicit function theory: 

- ~ ~ ( 8 )  
dc 
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Since the S-wave velocities are frequency-dependent, all derivatives imply par- 
tial derivatives with respect to frequency. All required quantities are given in 
Appendix A. 

Even if the dispersion function has been normalized to prevent "multilayer" 
overflow, it is not necessary to introduce the derivatives of the normalization 
coefficients to compute the group velocities�9 In fact the dispersion function without 
normalization is given by: 

FL (co, c) = ~I bi (co, c) 
i=1  

where bi is the matrix defined by (1), (2) and (3)�9 This equation can be written in 
a recursive form (decreasing): 

Fj = Fj+ 1 - by (9) 

F.=b.. 

Normalization leads to the division of each bi by a coefficient gi, which is the 
greatest absolute value of the elements of the resulting 1 x 2 matrix Fi. Therefore 
the normalized dispersion function is written: 

fit.(og, c) = (-I 
bi (co, c) 

i= I gi(co, C)" 

Hence: 

< < O( l) 
. . . . .  + F L  "~cc ~C ~C i=1  gi i=, 

A similar relation holds for OffL/Oco. Therefore, we obtain: 

�9 - - + F L  "~-~ 
de Laco j~ L a~ jc i =  I g i  i =  l 

L ac j~ L aC j~o i=,esi - } - F L ' ~  i=1 

(lO) 

(11) 

If the phase velocity has been computed with high accuracy, then FL is very close 
to zero and (11) reduces to: 

F < ]  1 F<-I 
de_ ka~Jc La~j ~ ,=,I] g] L-~g~I~ 
dco VOFL1 F~FL1 . ~ 1  F~FLI 

L ac j~ L a~ jo~ ,=, ~ L a~ jo~ 

(12) 

This equation does not hold if the derivative ~?F/ac is computed away to the root 
of F, as in the case, where a F / &  is used in the root-refining procedure of the 
dispersion function�9 In this situation a recursive approach has been chosen. 



536 N. Florsch et aL PAGEOPH, 

Equation (10) can be written in a recursive form as eqution (9): 

ff j  = /Oj+ I " b j  
& 

f i n=b ,  

where b, and/?j are 1 x 2 matrices, bj is a 2 x 2 matrix and & is a scalar value. The 
normalization has not been performed for the halfspace ( j  = n). The derivative of  
the normalized dispersion-function can now be determined with the same recursive 
scheme: 

op, 
ac ae & 

oL 
~c 

_ e P , + ,  .b, + 
Oc & 

Oc" 

5. Energy Integral 

abj ag~ 
a T  g' - b, . a7 

This additional quantity is necessary for the computation of seismograms 
(PANZA and SVHADOLC, 1987). The energy integral is defined as: 

fo ~176 . (b(z)~2dz. (13) 11 = P \ /50-,/ 

The energy integral can be calculated analytically, since simple analytic expressions 
are known for the eigenfunction v(z). The details of these calculations are given in 
Appendix B. 

6. Attenuation Due to Anetasticity 

The treatment of anelasticity requires, for causality reasons, the introduction of 
body wave dispersion (FUTTERMAN, 1962). In a medium with constant Q, the S H  
phase velocity can be expressed as: 

B~(co0) 
Bl(o~) = 2 /con\" (14) 

1 + -  " B I  ( coo )  " B 2 ( o % )  " In 
7"C 
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The layer index m is omitted. Bt(too) and fl2(o9o) are the S-wave velocity and the 
S-wave phase attenuation at the reference angular frequency o9 o. The quantities B~ 
and B2 are related to the complex body-wave velocity fl (SCHWAB and KNOPOFF, 
1972): 

1 i 
-- B1 i " B 2. 

In the computation we have chosen the reference angular frequency COo = 2re 
radians. In anelastic media the surface wave phase velocity c must be also expressed 
as a complex quantity: 

1 1 
i �9 C2 

C C '  1 

with C1 the attenuated phase velocity and C2 the phase attenuation, the latter being 
necessary for the computation of seismograms. C2 can be estimated by using the 
variational technique (TAKEUCHI and SAITO, 1972; AKI and RICHARDS, 1980). The 
phase attenuation Ca is given by: 

lz " B l  ' B 2 " ~ + I )  2 dZ 

C 2  - o (15) 

c # . v Z d z  

This integral can be calculated analytically, since simple analytic expressions are 
known for the eigenfunctions. The details of this computation are given in Ap- 
pendix B. 

The most important effect of the attenuation is the modification of the wave 
velocities and the decay of amplitude in the final computations of seismograms. As 
the variational technique is only an approximate method, the Q values can be in 
error by as much as 0-20 percent in comparison with the exact method. This error 
arises mainly from the use of the elastic and, therefore, real eigenfunctions to 
compute the phase attenuation. 

Recently DAY e t  al. ( 1 9 8 9 )  showed the limits of the variational technique in the 
locked mode approximation, which can be obtained by limiting the model with a 
rigid or liquid halfspace. They showed that an error in amplitudes up to 100 percent 
can occur, when dealing with low Q-values. The error increases when the Q-values 
undergo large variations with depth. Introducing a solid halfspace in the model and 
using the structure minimization procedure prevents this kind of error. 

Z S o u r c e  

In order to include the seismic source in the computations, the formulation due 
to  HARKRIDER (1970) and BEN-MENAHEM and HARKRIDER (1964) is used. For 
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response can be the double-couple point source, the Fourier transform of  the 
written for a given mode as: 

e - i k r  

. . . . . . .  e - ~rc2 (16) uo = IR( ) I e'% e-'3~/4" kl/2 •(0, h) 'Ac  x / ~  

where R(a~) is the Fourier transform of the source time function and O0 = arg(R(~o)) 
is the source apparent initial phase, is the absolute value of  the normal vector to 
the plane of motion, with units of length. The factor AL is given by: 

1 
A r  

2 . c  . u  "11" 

The effect of anelasticity is expressed by the term: 

C orC2 

)~(0, h) is the azimuthal dependence given by: 

z (O ,  h )  = i �9 ( d l  sin 0 + d 2 cos 0) + d3 sin 20 + d4 cos 20 

for a double-couple source, 

dl  = G ( h )  �9 cos 2 �9 cos 5 

dE = - - G ( h )  �9 sin 2 �9 cos 26 

i . V ( h )  . sin 2 �9 sin 26 d3=~ 

d4 = V ( h )  �9 cos 2 " sin 6 

0 is the angle between the strike of the fault and the epicenter-station direction, 2 
is the rake angle, 6 is the dip angle and h is the source depth. The source geometry 

S t a t i o n /  . . . . - " "  / 

/ 
/ / o0tWa  .lo   

$ .; 

it plan 

Figure 2 
Source geometry and coordinate system associated with the free surface. 0 is the angle between the strike 
of  the fault and the epicenter-station direction, 5 is the dip, 2 is the rake and h is the source depth. 



Vol. I36, t991 Synthetic Seismograms for SH-waves 539 

and the coordinate system associated with the free surface is given in Figure 2. G(h) 
and V(h) depend on the values of  the eigenfunctions at the hypocenter: 

Ps - k #s Vo 

D,(h) v~(h) 
v ( h )  - 

f~o Vo 

v o is the value of  the eigenfunction at the surface and G(h) is the stress at the depth 
of the source. Equation (16) is equivalent to equation (7.148) given in AKI and 
RICHARDS (1980). The seismogram related to a given mode is obtained by the 
inverse Fourier transform of (16). 

8. Examples of Computation 

Frequency Domain 

The layered model in Table 1 represents an average structure of the Friuli 
seismic area in the southern pre-Atps, close to the May 6, 1976, FriuE earthquake. 
The same structure was used to illustrate the mode summation for Rayleigh-waves 
(PANZA and SUHADOLC, 1987). 

Table 1 

Structure FRIUL7A. Q~ is taken as 2.SQp 

Thickness Density P-wave velocity S-wave velocity 
[kml [g/cm 3] [km/s] [km/s] Qp 

0.04 2.00 1.50 0.60 20 
0.06 2.30 3.50 1.80 30 
0.20 2.40 4.50 2.50 100 
0.70 2.40 5.00 2.90 200 
2.00 2.60 6.00 3,30 400 
3,50 2.60 6.20 3.45 400 
4,50 2.60 6.00 3.35 100 

I 0.00 2,60 5.50 3 30 50 
3.50 2.60 6.00 3.50 I00 
2.50 2.75 6.50 3.75 400 
2.50 2.80 ZOO 3.85 400 
7.50 2.80 6.50 3.75 100 
4.00 2.85 7.00 3.85 200 
3.00 3.20 7.50 4.25 400 
1.50 3.40 8.00 4.50 400 
9.00 3.45 8.20 4.65 400 
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1. Phase Velocities 

The dispersion curves for the first 154 Love modes are shown in Figure 3. For 
S-wave velocities less than 3.35 km/s the modes are well separated. This velocity 
corresponds to the S-wave velocity in the upper part of the crustal low-velocity 
zone (LVZ). Modes situated in the part of the spectrum below this phase velocity 
value, sample therefore the part of the crust above the uppermost LVZ. 

In the part of the spectrum with higher phase velocities the dispersion curves are 
packed together. An enlarged portion of this part is presented in Figure 3b. Since 
two LVZ are present in the structural model, areas are seen where the higher Love 
wave modes decompose into families of low-velocity channel waves and families of 
waves propagating in the upper crust. They appear in the dispersion curves as an 
apparent continuity of the phase velocities between adjacent modes. This mode-to- 
mode continuation leads to the identification of a family of waves. Each member of 
a wave family begins with one of the Love-wave modes and contains segments of 
all successive higher modes�9 They have almost continuous phase velocities, broken 
only at the points of near-oscillations. The segments of members of the family of 
upper-crustal waves form apparently continuous curves which sometimes seem to 
intersect the more horizontal trending family of the channel-wave curves. A 
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Figure 3 
(a) Love-wave dispersion curves for the structural model FRIUL7A. The mode numbering is the 
following: 0 for the fundamental mode, 1 for the first higher mode, 2 for the second higher mode, and 
so on up to 153. (b) Enlarged portion (modes 6-153) of part (a) showing the effect of low-velocity 

waveguides. 

member of the family of upper-crustal waves can be identified at a frequency of 
about 4 Hz in the phase velocity range 3.35-3�9 km/s. 

Another type of apparent continuity of the phase velocities for adjacent modes 
can be related to the structural layering (for example at a phase velocity of about 
4.25 kin/s). Such parts of the spectrum represent refracted waves at strong elastic 
impedance contrasts. They are characterized by phase velocities which tend to 
become constant with increasing frequency. 

2. Group Velocities 
The group velocity spectrum is presented in Figure 4. Due to the complexity of 

the pattern, it has been divided into two parts�9 Modes with group velocities 
less than about 2.8 km/s correspond to waves propagating in the low-velocity 
sediments. 
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In the part of the spectrum where group velocities are in the interval 2.8- 
3.2 km/s, several higher modes form stationary phases. They correspond to families 
of waves propagating in the upper crust and are characterized by the same type of  
mode-to-mode continuation as in the phase velocity curves. They can be interpreted 
as the high-frequer)cy equivalent of Lg phases (SCHWAB and KNOVOFF, 1972; 
KNOPOFF et al., 1973; PANZA and CALCAGNILE, 1975), which are propagating in 
the upper part of the continental crust. 

The fiat portions of group velocity curves formed by a large number of higher 
modes at about 3.35 km/s (Figure 4a) and 3.75 km/s (Figure 4b) correspond to 
waves propagating in the upper and lower channel. 

3. Energy Integral 
The energy integral can serve as an estimate of the contribution of the different 

modes to the surface displacement. In general, neglecting the influence of the source 
depth on the excitation of different modes, small values of the energy integral/1 
correspond to large surface displacements. In the whole frequency range, the 
fundamental mode has the lowest values of 11 (Figure 5). For a shallow source, the 
fundamental mode generally dominates the surface displacement. 
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Figure 4 
Love-wave group velocities for the structure FRIUL7A. The spectrum is divided into two parts: a) Love 

modes 0 30, b) Love modes 31-153. 

The mode2to-mode continuations in the lower part of the energy integral curves 
(Figure 5a) correspond to the high frequency equivalent of Lg waves�9 The low 
values of the energy integral indicate that these waves can give rise to significant 
amplitudes at the surface. 

Most of  the energy of channel waves is concentrated in the channel. Therefore, 
the energy integral of these families, seen in the upper part of  Figure 5a, takes 
higher values than those for upper-crustal waves. For  a given member of  this family 
the maximum displacement in the low-velocity zone becomes larger, relative to the 
displacement at the free surface, with increasing frequency. Therefore, the energy 
integral of this member is characterized by values increasing with frequency. This 
can be seen in the general pattern of the upper part of  Figure 5a. 

4. Quality Factor Qx 
The phase attenuation C2 of the SH-modes is related to the quality factor Qx by 

the relation 

1/Qx = 2C1 C2 
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where C 1 is the anelastic phase velocity (SCHWAB and KNOPOFF, 1972). The quality 
factor is presented in Figure 6. Q# is very low in the sedimentary layers. Modes 
mainly propagating in these layers are therefore characterized by low Qx values 
(Figure 6a). This is the case for the first few modes, especially for the fundamental 
and first higher mode. The effect of layering of Q# can be observed for several 
nearby modes that have almost constant Qx, for example Qx close to 65. The 
resulting Qx values are close to the values Q# of the structural model for those Love 
wave modes, whose eigenfunction mainly sample the corresponding part of the 
structure. 

Time Domain 

The first example corresponds to the November 4, 1976 Brawley, California 
earthquake. The structural model and source parameters have been proposed by 
HEATON and HELMBERGER (1978). Their structural model is given in Table 2. 
Since SWANGER and BOORE (1978) computed synthetic seismograms for this event 
with the mode-summation technique, their result, even if limited to the elastic case, 
provides a test for our programs. Therefore, the source parameters used to compute 
synthetics are the same as those given by SWANGER and BOORE. 

i,,~ �84 

o 

0"~- 

2 4 
FRE@UENCY 

I I I 

6 8 10 
(HZ) 

Figure 5a 
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Figure 5 
Love-wave energy integral 11 for the structure FRIUL7A. The spectrum is divided into two parts: a) 

Love modes 0 30, b) Love modes 31 153. 

A strike-slip point source is placed on a vertical plane at 6.9 km depth. The 
rupture-velocity time-function is a symmetrical triangle with a base of 1.5 seconds. 
At a distance of 33 km from the source, the displacement consists almost entirely of 
the fundamental mode and the first higher modes (Figure 7). The recorded 
displacement at the station IVC, 33 km from the source, is given in the same figure. 
The upper frequency limit is 1 Hz. It can be seen that there is generally a very good 
agreement between the two synthetic signals. 

Table 2 

Imperial Valley Structure proposed by HEATON and HELMBERGER (1978) 

Layer Thickness Density S-velocity 
[km] [g cm -3] [km s-1] 

1 0.95 1.80 0.88 
2 1.15 2.35 1.50 
3 3.80 2.60 2.40 

half space oo 2.80 3.70 
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In the second example we present synthetic seismograms for the structural 
model FRIUL7A shown in Table 1. The upper frequency limit is 10 Hz. The source 
parameters are related to those of the Friuli, May 6, 1976 earthquake (point-source 
approximation with the source parameters taken from SUHADOLC et al., 1988). The 
receivers are chosen in the direction of the dominant lobe of the radiation pattern 
of SH-waves (north-east direction, with a strike-receiver angle of 235~ resulting 
from the selected source parameters. Synthetic ground displacements, velocities and 
accelerations are presented in the lower part of Figure 8. The signals are filtered 
with a Gaussian filter (the first filtered frequency is at 9 Hz, with a reduction of the 
amplitude by factor 100 at the cutoff frequency of 10 Hz). This filter prevents 
ringing due to the cutoff frequency. A decomposition of the displacement into 
different sets of modes is presented in the upper part of the figure. It shows that the 
higher modes are essential in defining the shape of the waveform, especially in the 
body wave part of the synthetic seismograms. 

In Figure 9 synthetics due to a source with finite rise time are presented. The 
rupture-velocity time-function is a symmetrical triangle with a base of 0.5 seconds. 
The signals are filtered with the already described Gaussian filter. As expected, the 
energy is shifted to lower frequencies, as the duration of the source is increased. The 
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Figure 6 
Love-wave quality factor Q~ for the structure FRIUL7A. The spectrum is divided into two parts: a) 

Love Modes 0-30, b) Love modes 31-153. 

1 0  2 ~  3 ~  4 0  5 0  

TIME ( S )  

Figure 7 
Comparison between the observed ground displacement (top trace), the synthetic signals (middle trace) 
computed by SWANGER and BOORE (1978) and our synthetics (lowest trace) for the Brawley, 1976 
earthquake as recorded at station IVC. For the synthetic signals a vertical right-lateral strike-slip 
point source with duration of 1.5 s, placed on a vertical plane at 6.9 km depth, is considered. All 
amplitudes are normalized to a source with a seismic moment of I dyne era. The peak displacement is 

6.0.10-25cm. 
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Figure 8 
Displacement, velocity and acceleration (lower three traces), computed for a receiver placed 30 km from 
the source. The displacement is decomposed in different sets of modes (upper three traces: Love modes 
30-153, Love modes 10 29, Love modes 0 9). It shows the contribution of the higher modes to the 
signal waveform. An instantaneous point source with a depth of 7 km is considered (angle strike-receiver 
4) =280 ~ dip 6 = 30 ~ and rake 2 = 115~ All amplitudes are normalized to a source with seismic 
moment of 1 dyne cm. The peak displacement is in units of cm, the peak velocity in units of cm s-  ~ and 

the peak acceleration in units of cm s -2, 
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Figure 9 
Acceleration time series at  different distances from the source (15 kin, 30 km, 50 km and 100 kin). A 
point source with duration of  0.5 s and 7 km depth is considered (angle strike-receiver ~b = 280 ~ dip 
(5 = 3 0  ~ and rake 2 =  115~ All amplitudes are normalized to a source with seismic moment  of  

l dyne cm. The peak acceleration is in units of  cm s -2. 

strong phases at about 35 s, for the signal at 100 km distance from the source 
(lowest trace), can be identified as the Lg wavetrain. 

The last example compares synthetic seismograms and observed data for the 
September 11,  Friuli (Italy) aftershock (16:35). The event has been recorded by 
various accelerograph stations (CNEN-ENEL, 1977) The three component uncor- 
rected seismograms recorded at the station Buia are shown in Figure 10a. 

PANZA and SUHADOLC (1987) have shown, assuming the 1-D layered, anelastic 
structural model FRIUL7A, that the observed vertical signal at the station Buia 
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cannot be explained by one point source only. A good fit was obtained with three 
point sources, having different weights and time shifts, but the same focal depth and 
mechanism. The same conclusion was drawn by Mno et al. (1990) by modeling all 
three components of the recorded seismograms. In Figure 10b, the results obtained 
by MAO et al. (1990) are shown, where S H -  and P - S V - w a v e s  have been combined. 
The layered P- and S-wave velocity model (FRIUL7W in Table 3) used in their 
study is slightly different from the model FRIULTA. It is based on the result of a 
damped least-square inversion of arrival time data from local earthquakes (MAO 
and SUHADOLC, 1990). The differences between FRIUL7A and FRIULTW are the 
depth and shape of the upper low-velocity zone, the depth of the sedimentary cover 
and the quality factors. 

To fit the observed seismograms, the source is approximated by a sum of point 
sources using a trial-and-error technique. The parameters varied in the process are 
the number of point sources, their origin time and the weights of the single sources. 
The distance to the receiver, the source depth, the strike, dip and rake are varied, 
but kept constant for all subevents. All these parameters are adjusted until 
satisfactory (in the least-square sense) waveform fit was obtained, both in the time 
and in the frequency domain. 
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TIME (S) 
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Figure 10a 
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Figure 10 
Comparison of  the observed ground motion at the station Buia for the September 11, Friuli aflershock 
(16:35) with results from waveform fitting with the mode summation technique for a layered, anelastic 
structure, a) Uncorrected accelerograms, after Gaussian filtering, with a cutoff frequency of  7.5 Hz, for 
the September 11, Friuli M L = 5.7 aftershock (16:35), observed at the station Buia. The zero of  the time 
axes does not coincide with the origin time. The amplitudes are given in cm s 2. b) Synthetic 
accelerograms corresponding to six seismic point sources located at the same depth of  17.1 km and the 
same distance of 15 km (MAO et al., 1990). The strike, the angle between the strike of  the source and 
the receiver, the dip and the rake are 225 ~ 19 ~ 28 ~ and 115 ~ respectively. The six point sources have 
different weights and time shifts (1.0, 0.6, 0.6, 0.6, 0.5, 0.5 and 0 sec, 0.77 sec, 1.13 sec, 1.37 sec, 1.9 sec, 
2.18 sec). In the lowest part of  the figure, the normalized source-time function corresponding to the 
synthetic signals is shown. The seismic moment of 6.0.1024 dyne cm corresponds to the value which 
gives the best fit of the synthetic to the observed signals. 
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Table 3 

Structure FRIUL7A. (MAo and SUHADOLC, 1990). Q~, is taken as 2.5Q~ 

Thickness Density P-wave velocity S-wave velocity 
[km] [g/cm 3] [km/s] [km/s] Q# 

0.057 2.00 1.50 0.60 20 
0.043 2.30 3.50 1.80 20 
0.20 2.40 4.50 2.50 50 
0.70 2.40 5.55 3.05 100 
2.00 2.60 5.88 3.24 100 
0.10 2.60 5.70 3.14 50 
0.20 2.60 5.65 3.10 50 
0.20 2.60 5.60 3.06 50 
1.00 2.60 5.57 3.03 50 
0.50 2.60 5.55 3.02 50 
1.00 2.60 5.57 3.03 50 
0.20 2.60 5.60 3.06 50 
0.20 2.60 5.65 3.10 50 
0.10 2.60 5.70 3.14 50 
4.50 2.60 5.88 3.25 100 
0.10 2.60 6.10 3.40 200 
o. 10 2.60 6.20 3.50 200 
o. 10 2.60 6.30 3.60 200 
0.70 2.60 6.45 3.75 200 
2.50 2.60 6.47 3.77 200 
5.00 2.60 6.50 3.80 200 
5.00 2.60 6.55 3.82 200 
1.00 2.75 6.55 3.82 200 
2.00 2.75 7.00 3.85 200 
2.00 2.80 7.00 3.85 200 
7.50 2.80 6.50 3.75 100 
4.00 2.85 7.00 3.85 200 
3.00 3.20 7.50 4.25 400 
1.50 3.40 8.00 4.50 400 
9.00 3.45 8.20 4.65 400 

In  all cases of waveform fitting, the or ienta t ion of the sources agree well with 

previously published results by SLEJKO and  RENNER (1984), who interpreted the 

event as a thrust  on a very shallow N W  dipping plane. To fit the observed signals, 

several po in t  sources with different weights and  time shifts are required. The vertical 

componen t  and  the first phases of the seismograms can be well reproduced,  but  the 

NS-componen t  of  the synthetic seismograms has too big ampli tudes in the coda. 

The dura t ion  of  the observed E W  componen t  canno t  be reproduced with this set of  

point  sources. The stat ion Buia was placed in a sedimentary basin  and  effects like 

local surface waves in the basin or two-dimensional  resonances can become 

impor tant .  Lateral heterogeneities could therefore account  for the differences be- 

tween the observed and  the computed  signals for the two horizontal  components .  
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The vertical component of motion is less sensitive to such site-effects, as for 
example observed at different sites in Mexico City during the 1985 Michoacan 
earthquake (CAMPILLO et al., 1988).Therefore, considerably better results are 
obtained for this component. 

9. Conclusions 

In the case of a layered structure, the mode summation method is a powerful 
tool to compute synthetic broad-band seismograms. The mode follower and struc- 
ture minimization allow inclusion of low-velocity zones. Such computations are 
very efficient and stable. The resulting seismograms include first-order effects due to 
anelasticity, e.g., the intrinsic attenuation and body-wave dispersion. One of the 
most attractive aspects of the presented phase and group velocity spectrums is the 
possibility to identify particular phase arrivals. 

One may wonder whether the proposed method is applicable to local structures, 
which have seldom plane-layer characteristics. In fact, high-frequency seismograms 
are very sensitive to lateral heterogeneities. Their influence should be included in the 
numerical modeling. This in turn, requires the use of at least 2-D models to take 
into account different tectonic settings and site effects. One elegant and efficient way 
to handle this problem is either by the 2-D mode summation method (VACCARI et 
al., 1989) for different tectonic settings, or through the combined use of the modal 
summation method and the finite difference technique (Fs et al., 1990) for 
treating site effects. 

The mode summation method presented in this paper can be applied in many 
fields, especially in broad-band studies to analyze recorded regional earthquakes. It 
can serve to predict radiation patterns of Love waves and can be used in seismic 
hazard assessments. 

Appendix A: Derivatives of  the Matrices for the Computation of  the Group Velocities 

Three cases have to be distinguished: c > tim, C • tim and c = tim. To avoid 
excessively heavy notations, layer indexes m and n are dropped. The S-wave 
velocity is denoted by/~. Introducing body-wave dispersion, we have: 

B1 (COo) ~= 
1 + -  �9 Bl(e)o) �9 B2(c%) �9 In 

7~ 

B~ (e)o) and B2(coo) are, respectively, the phase velocity and the phase attenuation at 
the reference angular frequency e) o. The rigidity is # --pfl2 and p is the density. In 



554 N. Florsch et  al. PAGEOPH,  

the following, d is the layer thickness and k is the wavenumber.  Derivatives with 
respect to c denoted using a dot  symbol (.), while those with respect to co are 
denoted with a prime symbol ('). 

If  the halfspace is solid, we use the quanti ty s (ScHwAB and KNOPOFF, 1972): 

(,G)7 
8s I~ �9 c ~ =  
Oc = 

s '  - 8rods - 2 '  s '  B2(ro~ �9 co '/~ �9 2-~ ~ 2 ~ c  2 . 

If  the halfspace is liquid 

s = k  = s ' = 0  

while if the halfspace is rigid 

s = l  and k = s ' = O .  

First Case: c > [3 

We use here the following notations: 

1/ 
d 

Q = 6 o - r - - = k - r  .d.  
C 

The layer matr ix is: 

b = 

We have 

/~11 = 
Q ./~2. sin Q 
c .  (c 2 - / ~ 2 )  

cos Q /~ "r  . 

/z �9 r �9 sin Q c o s Q  

= ~" /~:. ,'~ + -- r-  (<~ - /~b)  
62, = # .  ( c  " sin Q Q : ~ 2 :  r " c~ Q'~ 

~ - r  + ~ . ( ~ - / ~ b  ) 

b~,= -d(r-c  2" B2((D0)'C ) 7 : ? : r  sine 
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b'2~=#'r .d(~ 

Second Case: c <// 

We use the here the following notations: 

r = - - i - ( ,  _(~),/2),/2 

d Q =co .r . - = k  .r .d 
C 

d 
Q * = C O  - r *  ' - -  

C 

subsequently: 

The layer matrix is: 

2 ' B2(coo) " c) 2"B2(coo) '# ' / / ' r (  
--fl~r cos a + . . . .  r~-co 2 - -  

with r - - i - r *  

with Q = i .  Q* 

sin Q = i �9 sinh Q* 

cos  Q = cosh  Q*. 

I cosh Q* sinh Q*] 
# �9 r*  / ~ 

-/1 - r* sinh Q* cosh Q*J 
b = 

We have: 

/~11 - Q*"//2. sinh Q* 
c .  (c 2 - / / 2 )  

/~12 1 ( e ' s i n h Q *  Q*_-//2~cosh_Q*] 
=-~ ~7:7,~ + ;._(~2_//2) j 

(c " sinh Q* Q* " fl2" r* "cosh Q *) 
~2, = ~ .  p2 . r ,  7:ij-_t ~ 

b l l  = d + ~-Tfl 77* s inh Q* 

( ~  2"B2(co0)-c) Q* 2" B2(coo) b~-  _a, + -s cosh 
- # ~ ' / / ' r * . p . c o  

( ~  2-B2(CO0)-C)cos hQ* b~, = - # - r * - d  q ~ . ~ T r  .- 

2 " B2(coo) " P " fl " r* ( cZ ) .  - - - -  2 +  Q 
�9 co / / 2 7 r ,  2 s m h  * 

C 2 

//2-. r i )  sm Q 

C 2 
//2-.r2)Sm Q 

C 2 (2+//27r,2)slnh Q *  
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Third Case: c = fl 

Here  r = Q = 0. Calcu la t ions  at  the l imit  c ~ fl are required.  The  layer  mat r ix  

becomes:  

We have: 

B =  # . 

1 

(.0 2 - d 2 

b l l  : C3 

0) 2 �9 d 2 

/)12 - -  C2 # -  

2 . #  . ~ o - d  
b21 - -  c 2  

2 - d 2 " o )  �9 B2(~o0) 
b~l -- 

7 Z ' C  

, = -  d .  4 -  (600)  J-  e 2 
b12 # 3 " ~ z ' # "  

b~l = 
4 " #  �9 d "  B 2 ((O 0) 

7C 

Appendix B: Computation of  the Integral Quantities I 1 and C 2 , 

The no ta t ion  S-L  denotes  the t rans i t ion  f rom the solid to the l iquid or  r igid 

halfspace,  while the classical solid halfspace will be deno ted  S-S. The do t  symbol  (.) 

is used here for the derivat ives with respect  to the time. Let  us first define the 

integral  J~m, J2m and  J3m. 

Wi th  

we get: 

qm = k  "rz~ "(z - -Zm- l )  

~ Zm 
J l  m -- cos 2 q,, dz 

*/~rn -- I 

J 2  m = sin 2 q,.,, dz 
d Z m  --  I 

J 3  m = sin q,. cos q,. dz. 
d Z m  - -  t 
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W e  h a v e  to  d i s t ingu ish  three  cases: c > ]~m, e < ]~m a n d  c = tim. 

For c >tim: 

c " s in(2Qm) 
j l =  -I 4 - c o . r ~ , ~  

j~ = dm c . s in(2Qm) 

2 4 . o 9  .rl~ m 

c �9 s i n  2 Qm 
J3  m - 

2 �9 co - ram 

c " sin 2 Qm J3m 
J Z -  

2 - c o  " r  2 g,~ r ~m 

g~ 
j 5  m = r 2 2 . 6 = r 2 4 . 7 

13 m " J m ,  J m  13,~ " J m ,  J m  = r 2 �9 

For c <tim: 

For c = tim " 

c " s i n h ( 2 Q * )  
J i m =  + 4.CO . r L  

j 2 _  dm c" s i n h ( 2 Q * )  

2 4 .co �9 r~,~ 

i"  c " s i n h  2 Q *  
J3m= 

2'CO 'r~m 

j4_  c ' s i n h  2 Q . *  j 3  

2 .  co. r .2 B~ r~m 

j 5  = _ r ~ 2 .  j 2 ;  j 6  = --r*2Bm " Jm,4" Jm7 __ 

S~m=dm; J~m=0; J~m=0 

j4  m = _ _ c o  d~ , :m = 0; :m = 0; JL  
2c 

g~ 

r*2 

r 2" d~  

3c 2 

B1. Energy Integral 

T h e  ene rgy  in teg ra l  is: 

I,= P \ ~o / 
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For a layered medium, the energy integral can be written: 

�9 for the (S - L) case 
= 

Ii = n--1 

[ ( ~ O ) 2 " ( ( m ~ =  I ( m ) ) + l ( s  S) )  f o r t h e ( S - S ,  case 

with: 

f I(m) = Pm"  dz  
m - - I  

I ( s -  S) = Pn " dz .  
n--I 

The integrals can be written: 

l) J,,, 2v , , ,_ l"yz , .  l . 1  ( Y z m -  2 " 7  
I ( m ) = - - P m  " k 2 "  1)2-1  J m +  k 2 . [ ~ 2  m -~- k . l l  m 

2 . k  Pn " Un-1  
I(s_ s) - 2 .  r~. 

where D m is the displacement and Yzm is the stress at the m-th interface. 

B2. Phase At tenuat ion 

The coefficient C 2 is given by: 

I 
co 

C2 =~ 

I~ " B I  " B2 �9 + I )  2 d z  

t 
~ c o  

c # "vZdz  
o 

C2 can also be written: 

11 + 1 2  

C 2 = i3  r  

with: 

fo fo 1 1 = _  kt BI B2 dg k2  v2 l ~ B1 B2 I)(Z) 2 �9 " �9 ~ -  . . . . .  d z  

\ V o /  

12 = /2 �9 B 1 �9 B 2 Y~ -Tdz 
oo 2 co b(z) dz. 

13 = - I~ " dz = k 2. v~ " # �9 \ ij ~ / 

(B1) 

(B2) 

(B3) 



Vol. 136, 1991 Synthetic Seismograms for SH-waves 559 

To compute 11 and 13 we can use the same scheme as for 11 in the expression (B1), 

assuming simple substitution in multiplicative coefficients: 

for I 1 we shall use (#mBlmB2mk2V~) instead of #m and 
for 13 we shall use (#mk2v~) instead of #m" 

Let us now consider 12. For the S - L  case, we obtain: 

1 2 = k  2" ~ #m " B1,. " B2mL,~ 
m = l  

while for the S - S  case, we have: 

( n--1 ) k . #n . Bi . B2 . v2 
IZ = k2 " ~ # m  " B I  m " B2mLm -- n -  I " r~. 

m = l  2 

The quantity L m is given by: 

2 1 
2 5 Yz~_~___I - J m  2 " V m - - l ' Y z m  I " J 6  

Lm ~-l)m--I "Jm ~- k2.#2 k'#m 

REFERENCES 

AKI, K., and RICHARDS, P. G., Quantitative Seismology (Freeman and Co., San Francisco, 1980). 
BEN-MENArtEM, A. (1961), Radiation of Seismic Surface Waves from Finite Moving Sources, Bull. 

Seismol. Soc. Am. 5/, 401-435. 
BEN-MENAHEM, A., and HARKRIDER, D. G. (1964), Radiation Patterns of Seismic Surface Waves from 

Buried Dipolar Point Sources in a Flat Stratified Earth, J. Geopbys. Res. 69, 2605-2620. 
CAMPILLO, M., BARD, P.-Y., NICOLLIN, F., and SANCHEZ-SESMA, F. (1988), The Mexico Earthquake 

of Septermber 19, 1985--The Incident Wavefield in Mexico City during the Great Michoacan Earthquake 
and its Interaction with the Deep Basin, Earthquake Spectra 4 (3), 591 608. 

CNEN-ENEL (1977), Uncorrected Accelerograms. Accelerograms from the Friuli, Italy, Earthquake of 
May 6, 1976 and Aftershocks: Part 3, Rome, Italy, November 1977. 

DAY, S. M., MCLAUGHLIN, K. L., SKOLLER, B., and STEVENS, J. L. (1989), Potential Errors in Locked 
Mode Synthetics for Anelastic Earth Models, Geophys. Res. Lett. 16, 203-206. 

FAH, D., SIJHADOLC, P., and PANZA, G. F. (1990), Estimation of Strong Ground Motion in Laterally 
Heterogeneous Media, Proc. 9-th European Conf. on Earthquake Eng., Sept. 1990, Moscow, USSR. 

FUTTERMAN, W. I. (1962), Dispersive Body Waves, J. Geophys. Res. 67, 5279-5291. 
HARKRIDER, D. G. (1970), Surface Waves in Multilayered Elastic Media. Part I1. Higher Mode Spectra 

and Spectral Ratios from Point Sources in a Plane Layered Earth Model, Bull. Seismol. Soc. Am. 60, 
1937-1987. 

HARVEY, D. J. (1981), Seismograms Synthesis Using Normal Mode Superposition: The Locked Mode 
Approximation, Geophys. J. R. Astr. Soc. 66, 37-69. 

HASKELL, N. A. (1953), The Dispersion of Surface Waves in Multilayered Media, Bull. Seismol. Soc. Am. 
43, 17-34. 

HEATON, T. H., and HELMBERGER, D. V. (1978), Predictability of Strong Ground Motion in the Imperial 
Valley: Modeling the M4.9, November 4, 1976 Brawley Earthquake, Bull. Seismol. Soc. Am. 68, 31-48. 

KNOPOFF, L. (1964), A Matrix Method for Elastic Wave Problems, Bull. Seismol. Soc. Am. 54, 431 438. 
KNOPOFF, L., SCHWAB, F., and KAtJSEL, E. (1973), Interpretation ofLg, Geophys. J. R. Astr. Soc. 33, 

389 -404. 
MAO, W. J., and SUHADOLC, P. (1990), Ray-tracing, Inversion of Travel Times and Waveform Modelling 

of Strong Motion Data: Application to the Friuli Seismic Area NE Italy, Geophys. J. Int. Submitted. 



560 N. Florsch et al. PAGEOPH, 

MAO, W., SUHADOLC, P., FNH, D., and PANZA, G. F. (1990), An Example of Interpretation Strong 
Motion Data by Source Complexity, 18th International Conference on Mathematical Geophysics, 
Jerusalem, Israel (17 22 June 1990). 

PANZA, G. F., SCHWAB, F. A., and KNOPOFF, L. (1973), Multimode Swface Waves for Selected Focal 
Mechanisms. L Dip-slip Sources on a Vertical Fault Plane, Geophys. J. R. Astr. Soc. 34, 265-278. 

PANZA, G. F., and CALCAGNILE, G. (1975), Lg, Li andRgfrom Rayleigh Modes, Geophys. J. R. Astr. 
Soc. 40, 475-487. 

PANZA, G. F. (1985), Synthetic Seismograms: The Rayleigh Waves Modal Summation, J. Geophys. 58, 
125-145. 

PANZA, G. F., and SUHADOLC, P., Complete strong motion synthetics. In Seismic Strong Motion 
Synthetics (Bolt, B. A., ed.) (Academic Press, Orlando 1987), Computational Techniques 4, 153 204. 

SCHWAB, F. (1970), Surface-wave Dispersion Computations: Knopoffs Method, Bull Seismol. Soc. Am. 
60 1491-1520. 

SCHWAB, F., and KNOPOFF, L. (1971), Surface Waves on Multilayered Anelastic Media, Bull. Seismol. 
Soc. Am. 61, 893-912. 

SCHWAB, F., and KNOPOFF, L., Fast surface wave and free mode computations, In Methods in 
Computational Physics, vol. 11 (Bolt, B. A., ed.) (New York, Academic Press 1972) pp. 86-180. 

SCHWAB, F., and KNOPOFF, L. (1973), Love Waves and Torsional Free Modes of a Multilayered 
Anelastie Sphere, Bull. Seismol. Soc. Am. 63, 1103-1117. 

SCHWAB, F., NAKANISH1, K., CUSCITO, M., PANZA, G. F., LIANG, G., and FREZ, J. (1984), Surface 
Wave Computations and the Synthesis of Theoretical Seismograms at High Frequencies, Bull. Seismol. 
Soc. Am. 74, 1555-1578. 

SCHWAB, F. (1988), Mechanism ofAnelasticity, Geophys. J. 95, 261-284. 
SLEJKO, D., and RHNNER, G. (1984), In "Finalit/t ed Esperienze della Rete Sismometrica del Friuli- 

Venezia Giulia", pp. 75-91. Regione Autonoma Friuli-Venezia Giulia, Trieste. 
SUHADOLC, P., CERNOBORI, L., PAZZI, G., and PANZA, G. F., Synthetic isoseismal: Applications to 

Italian earthquakes, Seismic Hazard in Mediterranean Regions, In. J. Bonnin et al. (eds.) (Kluwer 
Academic Press 1988) pp. 205-228. 

SWANGER, H. J., and BOORE, D. M. (1978), Simulation of Strong-Motion Displacements Using 
Surface-wave Modal Superposition, Bull. Seismol. Soc. Am. 68, 907-922. 

TAKEUCHI, H., and SAITO, M., Seismic surface waves, In Methods in Computational Physics, vol. 11, 
(Bolt, B. A., ed.) (New York, Academic Press 1972) pp. 217-295. 

THOMSON, W. T. (1950), Transmission of Elastic Waves through a Stratified Solid Medium, J. Appl. 
Phys. 21, 89-93. 

VACCARI, F., GREGERSEN, S., FURLAN, M., and PANZA, G. F. (1989), Synthetic Seismograms in 
Laterally Heterogeneous Anelastic Media by Modal Summation of P-SW-waves, Geophys. J. Int. 99, 
285-295. 

(Received November 20, 1990, revised/accepted May 30, 1991) 


