Impacts of groundwater on the atmospheric convection in Amazon using multi-GCM simulations from I-GEM project

Rong-You Chien, Min-Hui Lo, Agnès Ducharne, Bertrand Decharme, Chia-Wei Lan, Fuxing Wang

I. Motivation

 Wetter soil moisture will tends to have more precipitation if the circulation sustained

Chou et al., 2001

I. Motivation

 Wetter soil can induce higher evaporation, hence will cool down surface, which will create a strong downward velocity, in the results will reduce the precipitation during dry season in Amazon river basin (ARB)

II. I-GEM experiment

- Better understanding the impact of groundwater in different model
- Three online models have been chosen
 - CESM (AC)
 - CNRM-CM (AS)
 - IPSL-LMDZ (AO)
- On line simulation
 - 1979~2005, 5 simulations with prescribed water
 table depth at 1, 2, 3, 5, 8m and control run

IV. Model results

 Three models have different driest months, but all in JJA

pr

D3

D5

D8

REF

CESM

CNRM-CM

-60

-40

10

0

-10

-20

-30

-40

-50

-80

12

10

8

- Weird performance in latent heat in CESM
- CESM and IPSL have more precipitation in drier land

- CESM has most precipitation in North hemisphere in ARB region
- CNRM and IPSL showed the smillar pattern

- Soil Moisture indicated that both CESM and CNRM are wetter in D1 than D8
- Difference between
 D1 and D8 in IPSL is
 not significant in the
 middle of ARB

- Higher soil moisture intends to have higher latent heat
- Latent heat difference in IPSL is not significant in the middle of ARB

 Cooling effect in directly compare with the high latent heat area

- Cooling effect can enhance downward velocity in lower layer which suppress the circulation, and will lower the precipitation
- This kind of -0.02
 phenomenon can be -0.04
 seen in CESM and IPSL, but not in CNRM -0.06

- Canopy evaporation and soil evaporation are monotonically increasing/decreasing in CESM, hence transpiration is dominate in the variance of latent heat
- Higher precipitation tends to reduce the transpiration which make the latent heat lower in drier experiment

VI. Conclusion

- Although the total precipitation showed a similar pattern in CESM and IPSL, however the spatial pattern are different, which may need more analysis to decompose it
- Wetter in JJA in ARB will cause a cooler surface temperature and enhance the downward velocity which reduce the circulation. This process has been confirmed in all three models, however, the strength are different
- Transpiration patterns in CESM online experiment showed a weird patterns which may also have connection to precipitation

Thank you