Groundwater – SM – climate interactions: Lessons from idealized model experiments with forced water table depth

Agnès Ducharne¹, Min-Hui Lo², Bertrand Decharme³, Rong-You Chien², Fuxing Wang⁴, Josefine Ghattas⁵, Frédérique Cheruy⁴, Jeanne Colin³, Sophie Tyteca³, Chia-Wei Lan²

¹ METIS/IPSL, Paris, France
 ² Department of Atmospheric Science, NTU, Taiwan
 ³ GAME, CNRM, Toulouse, France
 ⁴ LMD/IPSL, Paris, France
 ⁵ IPSL, Paris, France

1. Introduction

The IGEM project

- Jointly funded by France (ANR) and Taiwan (MoST) for 2014-2018
- Three research teams and climate models: IPSL, CNRM, NTU
- Research goals:
 - Explore the impacts of GW on regional and global climate, and its links to water resources availability, through model analyses
 - Compare the sensitivity of simulated climate to different GW parametrizations within 3 different climate models
- Four model intercomparisons:
 - 1. Sensitivity to fixed water table depths (WTD)
 - 2. With dynamic WTD over the recent period, to assess the potential of realistic GW parametrizations to improve the simulated climate
 - 3. With dynamic WTD and climate change, with 2 complementary questions:
 (a) What is the influence of GW on the climate change trajectory?
 (b) What is the impact of climate change on water resources (including GW)?
 - 4. With dynamic WTD and withdrawals, with potential impacts on climate until water resources get exhausted.

1. Introduction

Identify where the WT can influence SM, ET, and LA coupling through idealized model experiments

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

Off-line or coupled to their parent climate model

following LMIP/AMIP-like protocols for intercomparability Off-line forcing = PGF (1°, 3-hourly, 1979-2010, Sheffield et al. 2006) + GPCC bias correction

Reference simulations with standard configuration

3. Off-line results

Land averages – Sensitivity to WTD

The critical WTD

Variation rate in % of Qle(REF)

All values are land averages

The critical WTD

Variation rate in % of Qle(REF)

WTDc = depth at which Qle response becomes <u>small</u>

Deeper WTDc \rightarrow higher sensitivity to WTD

All values are land averages

The critical WTD : 5% threshold

The critical WTD : 1% threshold

3. Off-line results

3. Off-line results

1% WTDc

The reasons for inter-model differences are not clear yet but may involve:

- Dynamic LAI in ORC, combined with different sensitivities of soil evaporation and transpiration
- Different models of unsaturated hydraulic parameters (BC for CLM & SUR, VG for ORC) *cf. Decharme et al. 2011*
- Different ways to link the soil and deep WTs

Land averages: ET

CLM and ORC have a larger reference Qle in coupled mode than offline

CLM shows smaller variations rates to shallow WTD in coupled mode

4. Coupled simulations

Land averages: Precipitation

4. Coupled simulations

WTDc at 1%: Coupled v. off-line

4. Coupled simulations

Comparison with actual WTD in CLM

WTDc - WTDref

Where blue, WTDref>WTDc, and there is no/low WTD impact on ET

- Arid zones for CESM
- Transitional zones for CLM

Off-line results

- The critical WTD helps comparing the sensitivity of surface fluxes to GW between different regions and models
- Models need WTDs down to 5 10 m to represent the effect of GW on SM and ET in arid and semi-arid zones

Coupled results

- Same overall WTDc patterns as from off-line simulations (no major change in aridity patterns because of WTD/atmosphere coupling)
- « Deeper » analysis is needed

Limits and perspectives

- Fixed WTD over the entire grid-cells \rightarrow highly unrealistic
- Same experiments with forced WTD over fractions of grid-cells (coupled mode)
- Comparison of the three LSMs with dynamic WTD parametrization

Thank you for your attention

