

Confronting Soil Moisture Dynamics from the ORCHIDEE Land Surface Model with the ESA-CCI SM Product: Perspectives for Data Assimilation

Nina Raoult¹

Bertrand Delorme¹, Catherine Ottlé¹, Vladislav Bastrikov¹, Philippe Peylin¹, Pascal Maugis¹, Jan Polcher²

¹Laboratoire des Sciences du Climat et de l'Environnement, IPSL, Gif-sur-Yvette, France ²Laboratoire de Météorologie Dynamique, IPSL, Palaiseau, France

Overview of presentation

- Comparison between ORCHIDEE and ESA-CCI SM product:
 - How is soil moisture modelled in ORCHIDEE?
 - What is the ESA-CCI product and how can we use it to improve soil moisture representation in ORCHIDEE?
- Preliminary data assimilation experiments:
 - What are the key model parameters linked to the water, energy and carbon cycles?
 - What are the key properties of soil moisture dynamics we want to focus on?
- Future perspectives

Soil Moisture in ORCHIDEE

- 3 hydric budgets for soil columns associated to vegetation
- Weighted average of the 3 SM variables
- 11 layer discretization for the soil column

ESA-CCI SM Combined Product

Daily values for 37 years (1979-2016)

Global coverage at a resolution of 0.25°

 Retrievals merged using GLDAS Noah LSM model

Prior steps

Bias correction

Choice of representative depth

Simple CDF matching used on all pixels over the 8 years considered

- Theoretical global mean sensing depth
 2cm
- Depth 2.2cm selected (top 4 layers)

Temporal Correlations

- Generally strong correlations globally
- Poor correlations at high latitudes
- Anomalies (i.e.
 without seasonality)
 lower correlation
 scores
- Correlations very sensitive to forcing used

Temporal autocorrelation

- Lag time = time after which data are no more auto-correlated
- Red areas: model autocorrelated longer then observations
- Blue areas:
 observations auto correlated for longer

 Autocorrelation sensitivity to soil resistance to evaporation parameterisation

Identifying parameters

Morris screening using 38 key parameters linked for water and carbon cycles

Followed at Sobol analysis (not shown)

Optimisation at a site

Parameters

 calibrated against:
 SSM in situ (SSM_{situ})
 SSM retrieved from
 ESA-CCI SM (SSM_{esa})
 GPP/Resp/LE and
 one of the SSM data
 streams (Multi_{*})

RMSE decreases in all cases except Multi_{situ}

RMSE over different fluxes

Parameters found by assimilating GPP/Resp observations worsens the fit to SSM

Best results when multiple fluxes used in assimilation

Identifying drydowns

 $\vartheta(t) = A \times \exp(-t/\tau) + \vartheta_{eq}$

 Defined as a dry period lasting at least
 5 days after a rainfall event exceeding
 5mm of rain.

Next steps

Identify drydowns for a number of sites globally covering a range of soil textures and vegetation types

See how τ changes with parameters calibrated over the SSM data and/or vegetation observations.

Calibrate τ directly

Thank you. Questions?

Raoult, N., et al. (2018), Confronting Soil Moisture Dynamics from the ORCHIDEE Land Surface Model With the ESA-CCI Product: Perspectives for Data Assimilation, Remote Sens. 2018, 10, 1786. <u>https://doi.org/10.3390/rs10111786</u>

Effect of forcing data and parameterisation

Soil resistance is a switch is the model

 Changing the meteorological forcing impacts the correlations more than changing the soil resistance parameterisation

Effect of forcing data and parameterisation

Removing soil resistance from the model affects evapotranspiration

Lag-time slightly more sensitive to this change of parameterisation than this change of met. forcing

Effect of calibration on drydowns

The larger the value of tau the longer it takes to drydown, the curve is shallow

 Calibration using RMSE lowers tau values in the model

Drydowns in ESA-CCI SM

ORCHIDEE land surface model

- ORganising Carbon and Hydrology In
 Dynamic EcosystEms
- Land component of the IPSL Earth System

Model

Simulates the Energy,
 Water and Carbon
 balance

Nina Raoult – ESA-CCI Soil Moisture Workshop – 15th November, 2018

Motivation: Why Soil Moisture?

- Impacts the water, carbon and energy cycles
- Complex interactions and feedbacks
- To be used in DA experiments to improve the model

Credit: NASA

Nina Raoult – ESA-CCI Soil Moisture Workshop – 15th November, 2018

Effect of meteorological forcing data

- Meteorological forcing data controls precipitation in the model
- Stronger correlations when using CERASAT

Nina Raoult – ESA-CCI Soil Moisture Workshop – 15th November, 2018

RMSD

Areas of dense vegetation masked and low quality time points removed

Low RMSD values in the Sahara

Values of SSM range 0.1- 0.4m³/m³, RMSD approximately 5-10% of SSM values

Nina Raoult – ESA-CCI Soil Moisture Workshop – 15th November, 2018