Demande

économique

P.-A. Javet **Paris** 14 nov. 2019

Demande d'eau d'irrigation, allocation des terres agricoles et changement climatique: analyse par la modélisation agro-économique

Pierre-Alain Jayet, Ines Chiadmi & coll. 1

pierre-alain.iavet@inra.fr

¹Economie Publique, INRA, AgroParisTech, Université Paris-Saclay, 78850. Thiverval-Grignon. France

Journées de Modélisation des Surfaces Continentales (14 novembre 2019)

économique P.-A. Javet

Paris 14 nov. 2019

Enjeux

_..,-..

Modèles

Scénarios

Illustration

Irrigation

Climat

Prix de l'ear

Discussion

Apports de l'économie à la modélisation

- Représenter les systèmes de productions agricoles & évaluer les impacts des changements
 - économique: politiques publiques, prix de marché
 - physique: climat
- Données économiques sur les systèmes de production
 - occupation du territoire, productions, prix
 - coûts marginaux des facteurs (terre) et de réduction des pollutions (émissions GES)
 - variables peu ou mal observées (irrigation)
- Quelques enjeux pour le futur
 - demande d'eau d'irrigation
 - production de calories alimentaires
 - émission de gaz à effet de serre

terres agricoles et changement climatique: analyse par la modélisation

agroéconomique

P.-A. Javet **Paris** 14 nov. 2019

Méthode

Systèmes, modèles, échelles, scénarios

S exploitations agricoles:

comportement économique -> offre de produits & demande d'intrants

- * agriculture, polyculture-élevage, élevage
- M couplage/forçage de modèles
 - * modèle de culture (STICS)
 - * modèle agro-économique ⇒ AROPAj ←

https://www6.versailles-grignon.inra.fr/economie_publique/Media/fichiers/ArticlAROPAi

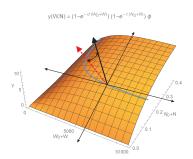
- E partitions emboitées
 - parcelle
 - système de production statistiquement représentatif
 - * région \Longrightarrow France \Longrightarrow UE(27)
- S hypothèses et environnement
 - * physique: → climat / adaptation
 - * économique: politiques publiques, prix

changement climatique: analyse par la modélisation

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Modèles


A l'échelle de la parcelle

Selon la région, le groupe d'exploitations, la culture:

rendement fonction d'apports eau et azote $y(W, N) = (1 - e^{-\sigma(W_0 + W)})(1 - e^{-\tau(N_0 + N)})\phi$

variables

- W: water $(m^3 ha^{-1})$
- N: nitrogen ($t ha^{-1}$) \mathbf{v} : yield (t ha^{-1})
- paramètres pour le modèle STICS (sol, variété, date de semis,...)
- W_0 : nat. avail. water $(m^3 ha^{-1})$ No: nat. avail. nitrogen (t ha-1)
- σ : water effic. curvature (ha m⁻³) τ : nitrogen effic. curvature (ha t^{-1})
- (all units yearly)
- ϕ : agronomic potential ($t ha^{-1}$)

- 1 Climat présent: sélection de la fonction (i.e. les paramètres STICS) minimisant l'angle entre vecteur de prix et gradient pour le rendement observé (figure)
- 2 Climat futur: T, pluie, CO₂ autres paramètres STICS inchangés (adapt. "faible")
 - $\Delta W_0, N_0, \sigma, \tau, \phi \Rightarrow$ fonction déformée

(Humblot et al., 2017)

Demande d'eau d'irrigation, allocation des terres agricoles et changement climatique:

analyse par la modélisation agroéconomique

P.-A. Jayet Paris 14 nov. 2019

14 110V. 20

Enje

Métho

Modèles

Scénarios

Illustration

Irrigation

Climat

Prix de l'eau

Discussion

A l'échelle de l'exploitation agricole

L'exploitant est supposé maximiser la marge brute de son exploitation (M) qui dépend des variables de décision (x) et des caractéristiques (θ)

Les activités x sont réalisables en respectant des contraintes techniques et économiques (ensemble $A(\theta)$)

 $\max_{x \in A(\theta)} M(x, \theta)$

 θ : SAU, capital animal, rendements (cultures, lait), besoins animaux (protéïnes, énergie), apports des aliments, prix et coûts, facteurs de pollution, ...

x: surfaces (cultures de vente, prairies et fourrages, friches et gel de terre), productions (végétales, animales) mises sur le marché ou auto-consommées, quantités d'intrants, pollutions, ...

 $A(\theta)$: allocation des terres respectant la SAU, démographie (bovine) en équilibre, rotations de culture, ...

Modèle AROPAj d'offre agricole de court terme, période annuelle en programmation mathématique (MP) - version V5 / UE27 / RICA 2007-2012 décliné en modèles de groupe type d'exploitation (GT) Données RICA (2009 - 157 GT pour la France)

sont exclus du modèle: vigne, maraichage, horticulture, arboriculture

changement climatique: analyse par la modélisation

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Enjet

ivietno

Modèles

Scénario

Illustratio

Irrigation

Climat

Prix de l'ea

Discussion

Modèle AROPAj décliné en groupes types

• GT k représentatif dans une région RICA ($k \in [K_1, K_2]$) \Leftrightarrow MP-k (e.g. GT-38 dans la région 192) $\max_{x_k \in A_k(\theta_k)} M_k(x_k, \theta_k)$

 $\mathsf{FADN}\ \mathsf{sample} \to \mathsf{clustering}\ \mathsf{into}\ \mathsf{FGs}\ \mathsf{based}\ \mathsf{on}\ \mathsf{FADN}\ \mathsf{farm}\ \mathsf{type},\ \mathsf{altitude},\ \mathsf{economic}\ \mathsf{size}\ \mathsf{and}\ \mathsf{irrigation}$

	GT	pays	nb_ind	otex	size class	mean eco size	mean alt	irr area ratio	irrigue	livestock per ha
			no "ma	otex						
	37	fra2	17	15	6-7-8	7.18	1.35	4.61	no	0.92
\rightarrow	38	fra2	19	15	6-7-8	7.16	1.16	57.00	yes	0.482
	39	fra2	30	45	6-7-8	6.83	2.00	12.10	yes	2.04
	40	fra2	34	45	6-7-8-9	7.29	3.00	0.00	no	1.37
	41	fra2	21	45	7-8-9	8.14	1.71	0.00	no	2.56
	42	fra2	30	46	6-7-8	7.07	2.17	4.96	no	1.49
	43	fra2	21	47	6-7-8-9	7.76	2.00	5.75	no	1.78
	44	fra2	31	48-73	6-7-8-9	7.58	2.23	10.30	yes	1.25
	45	fra2	40	16-61-83	6-7-8-9	7.50	1.40	21.70	yes	1.49
	46	fra2	41	51-52-53-74-84	6-7-8-9-10-12	8.05	1.88	20.90	yes	8.68

Couvrant l'Union Européenne

last AROPAj version: V5 applied to EU-27 - 2009-FADN ightarrow FRA ightarrow 192-region (38-FG)

FGs 10 (geo-downscaled) FGs

changement climatique: analyse par la modélisation

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

1.

Enjei

Métho

Modèles

Scénario

irrigation

Climat

Prix de l'eai

Discussion

Modèle AROPAj décliné en groupes types

• GT k représentatif dans une région RICA ($k \in [K_1, K_2]$) \Leftrightarrow MP-k (e.g. GT-44 dans la région 192) $\max_{x_k \in A_k(\theta_k)} M_k(x_k, \theta_k)$

 $\mathsf{FADN}\ \mathsf{sample} \to \mathsf{clustering}\ \mathsf{into}\ \mathsf{FGs}\ \mathsf{based}\ \mathsf{on}\ \mathsf{FADN}\ \mathsf{farm}\ \mathsf{type},\ \mathsf{altitude},\ \mathsf{economic}\ \mathsf{size}\ \mathsf{and}\ \mathsf{irrigation}$

G	T pa	ys -	nb_ind	otex	size class	mean eco size	mean alt	irr area ratio	irrigue	livestock per h
- 3	7 fr	a2	17	15	6-7-8	7.18	1.35	4.61	по	0.92
3	8 fr	a2	19	15	6-7-8	7.16	1.16	57.00	yes	0.482
3	9 fr	a2	30	45	6-7-8	6.83	2.00	12.10	yes	2.04
4	0 fr	a2	34	45	6-7-8-9	7.29	3.00	0.00	no	1.37
4	1 fr	a2	21	45	7-8-9	8.14	1.71	0.00	no	2.56
4	2 fro	a2	30	46	6-7-8	7.07	2.17	4.96	no	1.49
4	3 fro	a2	21	47	6-7-8-9	7.76	2.00	5.75	no	1.78
→ 4	4 fro	a2	31	48-73	6-7-8-9	7.58	2.23	10.30	yes	1.25
4	5 fro	a2	40	16-61-83	6-7-8-9	7.50	1.40	21.70	yes	1.49
4	6 fr	a2	41	51-52-53-74-84	6-7-8-9-10-12	8.05	1.88	20.90	ves	8.68

Couvrant l'Union Européenne

last AROPAj version: V5 applied to EU-27 - 2009-FADN ightarrow FRA ightarrow 192-region (44-FG)

157 FGs

10 (geo-downscaled) FGs

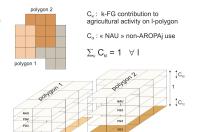
Demande d'eau d'irrigation. allocation des terres

agricoles et changement climatique: analyse par la modélisation

agroéconomique

P.-A. Javet Paris 14 nov. 2019

Modèles


Distribution spatiale d'un groupe type à l'échelle régionale

Contribution d'un GT à l'activité agricole avec un haut niveau de résolution spatiale selon un processus en 3 étapes ⇒ probabilité de présence du GT

approche MNL standard en économétrie spatiale (Chakir, 2009) "expliquer" l'activité i sur le pixel $i \Rightarrow$ priors

raffiner les probabilités par une méthode d'entropie généralisée (Chakir, 2009) probabilité de trouver i sur i (avec ajout d'information régionale)

distribution spatiale des GT AROPAi (Cantelaube et al., 2012) contribution of the k-FG to the agricultural activity on the i-pixel (→ on the p-polygon)

permet de distribuer tout résultat "AROPAj" sur l'espace géographique

(unité physique ou économique par "hectare moyen" par type de polygone)

économique

Climat

Discussion

Scénarisation

Contexte économique et physique

Economique

- demande d'irrigation "filtrée" (RICA)
 vs "non filtrée" (demande "potentielle" d'eau d'irrigation)
- variation du prix de l'eau
- (PAC "2007" ajustée / DPU, pas de de gel de terre, pas de quota sucre, limite 170kgNorg/ha)

Physique

variation du climat: AR4-SRES-(A2,A1b,B1); AR5-RCP-4.5

modélisation agroéconomique

P.-A. Jayet Paris 14 nov. 2019

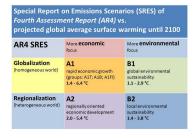
Enje

Métho

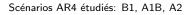
Scénarios

Scenario

mustratio

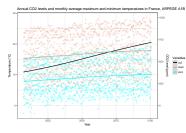

Irrigation


Climat


Prix de l'eau

Discussion

Changement climatique, AR4-SRES, GCM



Modèle de circulation globale et période: ARPEGE-Climat 2010-2100

exemple A1B (moy. mens. $Tmin \& Tmax, CO_2$) \rightarrow

modélisation agroéconomique

P.-A. Jayet Paris 14 nov. 2019

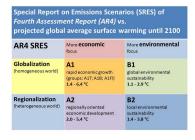
Enjei

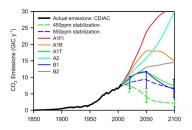
Métho

Scénarios

Scenari

Illustratio

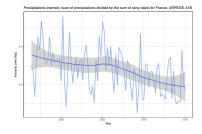

....


D 1

Climat

Discussio

Changement climatique, AR4-SRES, GCM



Scénarios AR4 étudiés: B1, A1B, A2

Modèle de circulation globale et période: ARPEGE-Climat 2010-2100

exemple A1B

(intensité des précipitations) →

changement climatique: analyse par la modélisation agro-

économique

P.-A. Javet Paris 14 nov. 2019

Scénarios

Perception économique du changement climatique

 Dans la chaine de modélisation, le CC joue un rôle direct via les fonctions de rendement

9 cultures (blé tendre, blé dur, orge, maïs, tournesol, colza, soia, betterave, pomme de terre)

- Adaptation "faible" / échelles parcelle & ferme (productivité, allocation terre)
- Chaque "année climatique" est successivement percue par les agriculteurs comme la "réalisation" du climat moyen du moment
- 4 Variation du "prix" de l'eau (ceteris paribus)

facteur du prix de référence sur 9 niveaux: - 1 - 1.25 - 1.5 - 1.75 - 2 - 2.5 - 3 - 3.5 - 6

90 GT 13 régions fra1 (France - nord) 67 GT 9 régions fra2 (France - sud)

économique P.-A. Javet

Paris

14 nov. 2019

Prix de l'ea

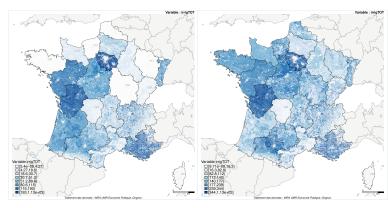
Discussion

Exploitation du modèle

Du calibrage à des exercices de prospective

- estimation de la demande d'eau d'irrigation & demande potentielle (2008-2012) (m³/ha)
- ② allocation des terres et productions agricoles, émissions GES (ha/ha → part de surface, t/ha, tCO2₂/ha)

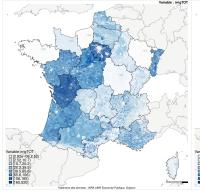
valeurs par ha, sachant que la SAU AROPAj est une partie de la surface agricole (75 à 95% selon les régions) et la SAU une partie de la surface (60% en France)

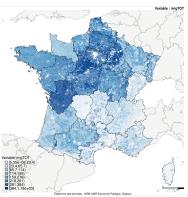

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Irrigation

Demande d'irrigation - France - RICA 2009

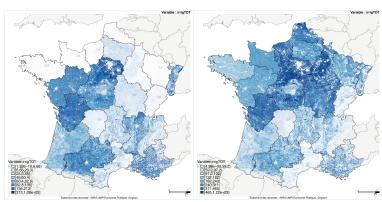

agroéconomique


P.-A. Jayet Paris 14 nov. 2019

Irrigation

Demande d'irrigation - France - RICA 2010

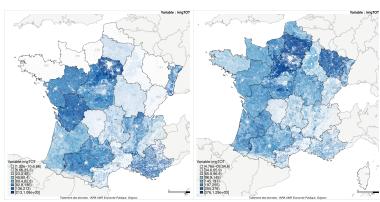
filtre RICA


agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Irrigation

Demande d'irrigation - France - RICA 2011

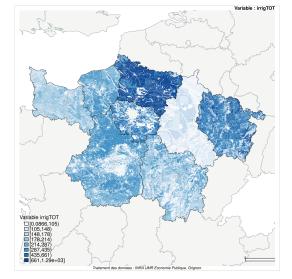

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Irrigation

Demande d'irrigation - France - RICA 2012

filtre RICA

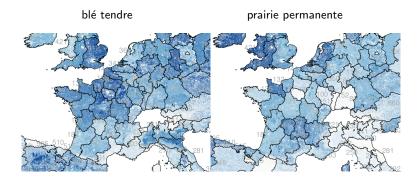

Demande d'eau

économique P.-A. Jayet

Paris 14 nov. 2019

Irrigation

Demande d'irrigation - régions \cap BV Seine (irrigation potentielle - RICA2012)



agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Production

Part de surface UE27 - RICA 2012

Demande d'eau d'irrigation, allocation des terres agricoles et changement climatique:

analyse par la modélisation agroéconomique

P.-A. Jayet Paris

14 nov. 2019

Enjei

Métho

Modèles

Julianus

Irrigation

Production

Prix de l'e

Discussio

Exportation nette "ferme" UE27 - RICA 2012

collecte blé tendre

calories $(t_{equiv.ble.tendre}/ha)$

modélisation agroéconomique

P.-A. Jayet Paris

14 nov. 2019

Enjei

Métho

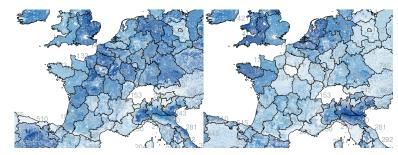
Modèle:

Scénario

Illustratio

Production

Climat

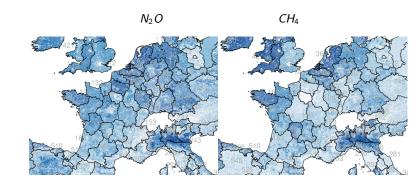

Prix de l'eau

Discussio

engrais et livestock UE27 - RICA 2012

engrais minéral

effectif animal (UGB/ha)

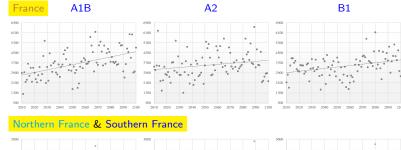

changement climatique: analyse par la modélisation

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Production

émissions GES UE27 - RICA 2012


changement climatique: analyse par la modélisation agro-

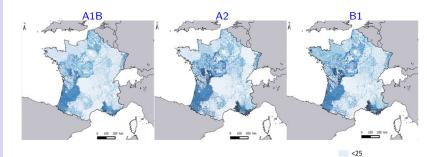
économique P.-A. Jayet

Paris 14 nov. 2019

Climat

Demande d'eau d'irrigation - 2010-2100

Demande annuelle estimée en millions m^3


Tendance

modélisation agroéconomique

P.-A. Jayet Paris 14 nov. 2019

Climat

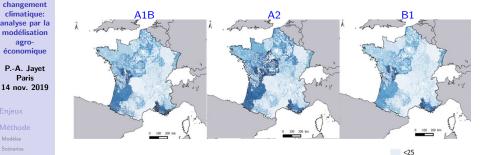
Demande d'eau d'irrigation: distribution spatiale

moyenne décennale (2011-2020)

3 SRES A1B, A2, B1 spatialisation AROPAj

[50;75] [75;100] 1100:1501 [150;200] 1200;2501 1250:2501 >300 $(m^3ha^{-1}y^{-1})$

]25;50]


agroéconomique

P.-A. Jayet Paris

14 nov. 2019

Climat

Demande d'eau d'irrigation: distribution spatiale

spatialisation AROPAj

agroéconomique

P.-A. Jayet Paris 14 nov. 2019

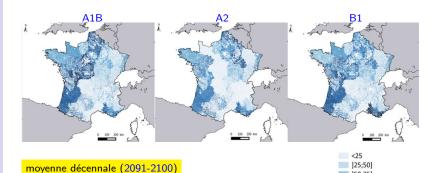
14 nov. 20

Enjei

Métho

Modèles

Illustration


Irrigation

Production

Climat

Discussion

Demande d'eau d'irrigation: distribution spatiale

3 SRES A1B, A2, B1

3 SRES A1B, A2, B1 spatialisation *AROPAj*


modélisation agroéconomique

P.-A. Jayet Paris

14 nov. 2019

Climat

Demande d'eau d'irrigation: distribution spatiale

moyenne décennale (2091-2100)

3 SRES A1B, A2, B1

spatialisation AROPAj

[25;50]

150;751

agricoles et changement climatique: analyse par la modélisation

agroéconomique P.-A. Jayet

Paris 14 nov. 2019

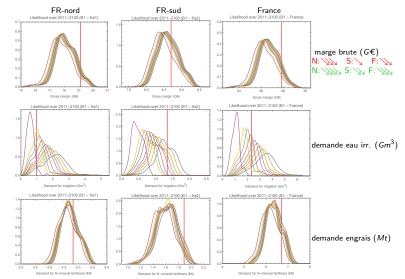
Enjeu

.

Modèles

Scénarios

Illustratio


Irrigatio

Prix de l'eau

Discussion

Réponse au CC et à la variation de prix B1

Distribution des résultats AROPAj - 91 climats équiprobables - 9 jeux de prix

changement climatique: analyse par la modélisation

agroéconomique P.-A. Jayet

Paris 14 nov. 2019

Enjeu

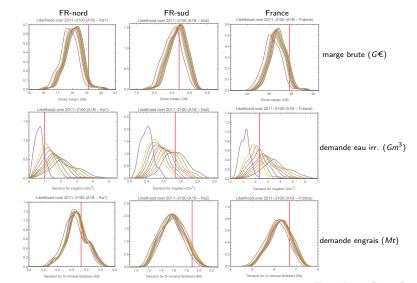
_

Modèles

Scénarios

Illustratio

Irrigation


CI.

Prix de l'eau

Discussion

Réponse au CC et à la variation de prix A1B

Distribution des résultats AROPAj - 91 climats équiprobables - 9 jeux de prix

changement climatique: analyse par la modélisation

agroéconomique P.-A. Jayet

Paris 14 nov. 2019

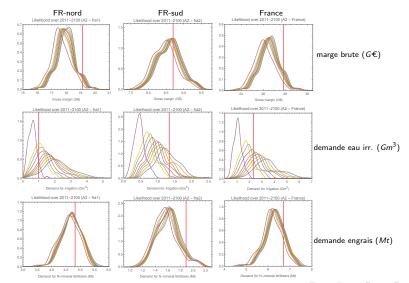
Enjeu

Mátha

Modèles

Scénarios

. . . .


Produ

Prix de l'eau

Discussio

Réponse au CC et à la variation de prix A2

Distribution des résultats AROPAj - 91 climats équiprobables - 9 jeux de prix

agroéconomique P.-A. Jayet

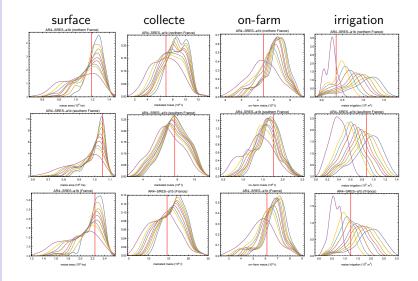
Paris 14 nov. 2019

Enier

Métho

Modèles

Scénario


....

Produc

Prix de l'eau

Discussio

Maïs - SRES A1B - nord/sud/France

analyse par la modélisation agroéconomique

climatique:

P.-A. Jayet Paris 14 nov. 2019

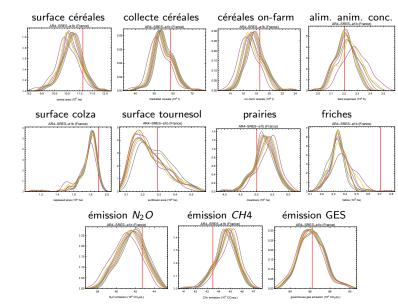
14 HOV. 20

Enje

Métho

Modèles

Scénarios


Illustration

D .

Prix de l'eau

Discussion

Activités générales - SRES A1B - France

Paris 14 nov. 2019

Discussion

Modéliser plus vite que le changement climatique

Limites, extensions, perspectives

- cultures sans fonction de rendement ("point" RICA)
- élasticités prix inverses
- AR5 RCP (4.5)
- adaptation niveau des cultures (variétés)
- carbone "sol"
- systèmes alternatifs ("bio")
- compétition / usages des terres (forêt ...)