

Higher than expected CO₂ fertilisation inferred from leaf to global observations

Vanessa Haverd, Ben Smith, Pep Canadell, Matthias Cuntz, Sara Mikaloff-Fletcher, Graham Farquhar, William Woodgate, Peter Briggs, Cathy Trudinger

OCEANS AND ATMOSPHERE www.csiro.au

Net global land carbon sink increasing at 0.06±0.02 Pg(C) a⁻¹ (Le Quéré *et al.* ESSD 2016)

Net global land carbon sink increasing at 0.06±0.02 Pg(C) a⁻¹ (Le Quéré *et al.* ESSD 2016)

Increasing trends in satellite-observed vegetation cover (Forzieri *et al.* Science 2017)

-0.1 -0.05 0 0.05 0.1 δ (LAI) [m²m⁻²decade⁻¹]

Carbonyl sulfide in air and ice \Rightarrow 31 ± 5% increase in GPP 1900-2010 (Campbell *et al.* Nature 2017)

Amplitude of seasonal cycle of NH CO₂ increased 56% from 1960 to 2010 (Graven *et al.* Science 2013)

Under-prediction of global GPP increase ⇒ about one third of growth is unaccounted

CSIR

Predicted increase in NH CO₂ amplitude underestimated compared with aircraft observations

Graven et al. Science 2013

Co-ordination hypothesis: plants optimise productivity by relative nitrogen investment in electron transport (A_j) and Rubisco-limited (A_c) steps in the photosynthesis chain, such that they are co-limiting.

> $= 1.01 (\pm 0.01) \text{ X}, r^2 = 0.94^{***}$ 30 Ac \prime_c (µmol m⁻² s⁻¹) 20 30 40 I V_{1} (µmol m⁻² s⁻¹)

 $A_c \simeq A_j$ under last month's average plant growth conditions

Maire et al. PloS One 2012

Constraints on trends in global-scale terrestrial biospheric activity (Haverd *et al.* GCB 2020)

Constraints on trends in global-scale terrestrial biospheric activity (Haverd *et al.* GCB 2020)

Constraints on trends in global-scale terrestrial biospheric activity (Haverd *et al.* GCB 2020)

Simulated CO₂ fertilisation effect on photosynthesis is significantly higher than current estimates

Wang et al. Nat Plants, 2017

Global GPP increase predominantly driven by CO₂

Leaf-level CO₂ fertilization effect dominates total GPP increase

(Donohue et al. GRL, 40, 3031-3035, 2013)

[§] Tropical forest catchment water balance (Yang et al. J. Geophys. Res.-Biogeo., 121, 2125-2140, 2016)

Projected Land Carbon Sink (2° scenario)

Haverd et al., GCB 2020

Conclusion

- We identified a CO₂ fertilisation effect on historical global GPP that is significantly higher than current terrestrial biosphere model estimates
 - Important for the future role of land carbon sinks.
 - under-estimate of CO₂ removal under low emission scenarios consistent with the Paris agreement targets
- Under-prediction of GPP trends is associated with a lack of representation of plant co-ordination of photosynthesis
 - Independent regional studies using CO₂ seasonal cycle data (NH extratropics) and catchment water-balance (tropical forests) have also inferred larger CO₂ fertilisation effects than predicted by terrestrial biosphere model ensembles.
 - Causes are poorly known, but biases associated with the representation of nutrient limitations on GPP are invoked. We suggest co-ordination of photosynthesis also plays a role.

