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Preface

O The polarization mechanism in mineralized medium is not
completely understood yet.

O Diffusion of charge carriers inside the semi-conductor grain or
around it in the electrolyte: which one is determinant?

O The basic equation is not valid in mineralized medium:

Q

T F (after Gurin et al.2015; Revil et al. 2015)



Objectives

O New experimental study of the polarization phenomena in
mineralized medium (semi-conductors).

O New numerical modelling based on Poisson-Nernst-Planck
equations has been applied.



Background

d Wong (1979) attributes the polarization observed over
mineralized medium to two mechanisms:

1- Redox-active ions at the grain surface.
2- Flow of inactive ion in the solution.

O Revil et al. (2015 a, b) attribute the polarization in presence of
semi-conductor minerals to the diffusion and accumulation of
charges (electrons and holes) inside the metallic grains (in
absence of redox activity).

1 Both studies show that the metal grain behaves like isolator at
lower frequency.
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Experiments setup

Measurements: Complex resistivity of uncosolidated sandy medium
Variables:

1- semi-conductor content.

2- electrolyte type and concentration (0.001 to 0.5 mol/l).

3- semi-conductor type (galena, pyrite, chalcopyrite and graphite).
4- grain size.

Background medium

- Fine grain sand
(negligible polarization)

- Full saturated medium

Assumption
- no oxidization.




Calculated parameters

O Chargeability: M = 90;900
0

Po and Py, are amplitude of the complex resistivity at lower and higher
frequency.

1
2"Tfpeak

d The relaxationtime: T =

fpeak is the critical frequency (the frequency of the phase peak).



Semi-conductor content

O Example: measurements on Galena of 0.5 mm grain size.
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(Mahan et al.1986; Hupfer et
al. 2016).

v’ Linear relationship between (M) and the volume content semi-conductor.



Electrolyte concentration vs chargeability
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v" No relation between M and the electrolyte type or concentration.



Phase (mrad)

Electrolyte concentration vs relaxation time

O Example: measurements on 1% volume of Graphite with 10-15 mm

grain size.
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v’ Linear relationship between (1) and solution conductivity (o).

v" No change in the phase shape and phase amplitude. 9



Electrolyte type vs mineral type

v' The conductivity strongly

Impacts the time constant
T.

loglo(r) = —0.8 loglo(cw) + B

B is dependent on the grain
size and mineral type.
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Semi-conductor grain size

0 Example: measurements on Chalcopyrite with different grain size.
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v Log - log relationship between (1) and a?.

v Negligible change of (1) with mineral type (Galena and Chalcopyrite). n



Modelling assumptions

O Poisson-Nernst-Planck equations (PNP):

%zv Dchi+ieciVV ; 1=1...N
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O This couple of equations describe the influence of the ionic
concentration and the electrical potential on the flux of charge-
carriers in the medium.

0 The PNP equations have been applied to model the electromigration
diffusion of charge carriers in electrolyte and in semi-conductors.
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Numerical calculation

O The time dependent problem solved by using the finite difference
approximation in time (Euler’'s method).

Neumann condition

O The space dependent problem solved < &
by using the finite element method. T S
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Q Freefem++ software is used to I :
perform the numerical computation. = 3

(http://www.freefem.org/).

Neumann condition
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http://www.freefem.org/

Results of numerical calculation

t=0.0le-6s

0 Assumptions:
1- Before injection:

= Potential is zero everywhere in
medium

= Homogeneous ions concentration.

2- After injection:

= When the particle at center: its
0 05 1 own potential i1s zero all time.
X (m) <1078 (simplification)
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Potential distribution
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Changing the concentration-Numerically

6 | X 10~ _ _
| x10 —(C=0.005 mol/l
—C=0.01 mol/l
Toff — - -C=0.1 mol/l |
2
3
&
E - =
- ) 5
£
-0.5
1 - 1(A)
=] -0.5 0 0.5 1
X (m) %107
Ton Toff
s l .
4 3 2 1 0 1 2 3 4 Time (s)
%107

The secondary potential (V)
Case of KCI electrolyte.

The potential difference between M and N
during a cycle of Ton and Toff.

16



Changing the concentration

Decay curve fitted with
exponential function.
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Qualitative Comparison (Numerical vs experimental)

0 Measurements and modelling in presence of KCI electrolyte.
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Conclusions

v M s a function of the metal volume and independent of the electrolyte type
and concentration.

v’ 1is a function to grain radius, electrolyte conductivity, and slightly to mineral
type.

v" The electric dipole formed inside the semi-conductor induces a diffusion of
charge carriers in its vicinity.

v' The amount of charge carriers affected by the electric dipole will exist in a
smaller zone at higher concentration that’s possibly why T decreases.

v At lower frequency the numerical calculation shows that the grain behaves
as isolator.

v Numerical calculations is in agreement with experimental results and shows
a dependence of relaxation time on the electrolyte concentration.
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Outlook

Improvement of the numerical model
Make computation in frequency domain.

Managing the FreeFem++ up scaling to reach more realistic
simulation

Managing a semi-empiricale model the same as the model of
realistic parameters.
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