Agronomic and environmental performances of organic field crop farms in the North of France

Turning back or moving forward ?

18 th Nitrogen Conference, June 2014 Lisbon

Context and objectives

- Strong decoupling between animal and crop productions
- Groundwater contamination : 40 % of the 5000 drinking forages are endangered with nitrates and pesticides
- Costal marine eutrophication : algae bloom (non siliceous)

IMMEDIATE FUTURE

Will the application of French regulatory measures in favour of « good » fertilization practices be sufficient to satisfy the requirements of European directives ?

Permanent

grassland

160 180

Billen et al., 2013

140

• No pesticides or synthetic fertilizers

Organic farming

• < 3 % A.L.U

North France in 2010:

35 % of organic farms are

specialized in crops

END BEYOND

Self sustaining mixed farming system (19th century)

Julien Dupré « Bergère gardant son troupeau » Equilibrium between liverstock and crop

metis

What were the production performances of traditional mixed farming and what was the level of environmental N losses ?

Material and methods

2.1 The Soil Surface Balance (SSB)

3. Results

organic

Barley

N surplus

N org.

—Organic

Total N

Harvested

Wheat

Total N

inputs

Conventional

—Traditional

compared to conventionnal means

Whea

DM/ha

ield.

4.1 Comparing agronomic and environnemental performances

4.1.1 Organic vs Conventional yields 4.1.2 N-efficiency over the rotation : N inputs and N export

- Organic crop rotation reach high protein yields that equalize or outperform conventional ones at similar fertilization rates.
- **Organic cereal yields shows a 40% decrease** Organic surplus are on average 40 % lower than intensive cereal rotations managed with official fertilization practices.

4.2 Breakpoints and common features of 3 contrasted agrosystems systems

2.2 A variety of data sources to assess fertilization practices and yields

Organic farming	Conventional farming	Mixed farming (19 th c.)
Individual enquiries Rotations, fertilisation practices,	Mandatory requirements	Historical archives
yields, soils	 Liberté · Égalité · Fraternité République Française Official fertilization Decrees (2012) 	 Realistic novel (Zola La Terre Realistic novel (Zola, 1887)
	Mineral fertilization balance during the growth cycle	One-farm routine, fertilization, herd
	X (kgN/ha) = bN-P-Mh-Mcc-Mowp-SMN	management
	Crop Mineralisation of humus, Soil	 Surface and yields statistics (1870-1895)
30 farms specialized in field crop (no breeding activities)	needs catch crops, organic min. N waste products	(Compiled from the French Ministery of Agriculture paper archives)

- The dominant cropping system (Rape-Wh-Wh) is characterized by high cereal yields (9tDM/ha), large synthetic fertilizers inputs and high N surplus leading to sub-root concentrations well above drinking water standards.
- N fluxes of cropland in the traditional 19th system were nearly in balance but total harvested N were reduced threefold compared to current agrosystems.
- The canonical complex organic crop rotation produces similar N yields than the conventional but wheat yield are reduced by half and around 60 % of the harvested material is intended for animal nutrition. Legumes are the main source of N inputs and exogeneous sources are minor.

References

Anglade, J., Billen, G., Garnier, J. (in review). New relationships for estimating .N₂ fixation in legumes: incidence on N balance of low-input cropping systems in Eucope. Ecological applications.

Billen, G., Garnier, J., Benoit, M., Anglade, J., 2013. La cascade

Conclusions 5.

- SSB is a robust indicator to compare different agricultural systems in terms of agronomic (N-yields, N-efficiency) and environmental (N sources, N losses) performances.
- ✓ Integrated over the crop rotation, organic surplus are lower (40 % on average) than conventional surplus (even strictly following the rules of rational) and optimised application of fertilisers) because of high N yields due to the presence of N-rich legumes.
- The mere application of official fertilization recommendations, without reconsidering crop yields or rotations, are not sufficient to deliver sub-root

water meeting the drinking standards of 11 mgN/l.

The extension of organic agriculture, to meet water quality targets while maintaining high protein productivity, depends upon local opportunities of

valorizing legume fodder cereal by-products, as was the case for pre-industrial mixed farming systems.

de l'azote dans les territoires de grande culture du Nord de la

France. Cahiers Agricultures. 22:272-281