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Global-scale evaluation of a hydrological variable 

measured from space: SMOS satellite remote 

sensing soil moisture products 

 
 

 

Abstract 

 

 

Soil moisture (SM) plays a key role in meteorology, hydrology, and ecology as it 

controls the evolution of various hydrological and energy balance processes. The community 

of scientists involved in the field of microwave remote sensing has made considerable efforts 

to build accurate estimates of surface SM (SSM), and global SSM datasets derived from 

active and passive microwave instruments have recently become available. Among them, 

SMOS (Soil Moisture and Ocean Salinity), launched in 2009, was the first ever passive 

satellite specifically designed to measure the SSM, at L-band (1.4 GHz), at the global scale. 

Validation of the SMOS SSM datasets over different climatic regions and environmental 

conditions is extremely important and a necessary step before they can be used. A better 

knowledge of the skill and uncertainties of the SSM retrievals will help not only to improve 

the individual products, but also to optimize the fusion schemes required to create long-term 

multi-sensor products, like the essential climate variable (ECV) SSM product generated 

within the European Space Agency’s (ESA's) Climate Change Initiative (CCI) program. After 

the introductory Chapters I to III, this dissertation consists of three main parts. Chap. IV of 

the dissertation evaluates the passive SMOS level 3 (SMOSL3) SSM products at L-band 

against the passive AMSR-E SSM at C-band by comparing them with a Land Data 

Assimilation System estimates (SM-DAS-2) produced by the European Centre for Medium 

Range Weather Forecasts (ECMWF). This was achieved over the common period 2010-2011 

between SMOS and AMSR-E, using classical metrics (Correlation, RMSD, and Bias). In 

parallel, Chap. V of the dissertation evaluates the passive SMOSL3 products against the 

active ASCAT SSM at C-band by comparing them with land surface model simulations 
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(MERRA-Land) using classical metrics, advanced statistical methods (triple collocation), and 

the Hovmöller diagram over the period 2010-2012. These two evaluations indicated that 

vegetation density (parameterized here by the leaf area index LAI) is a key factor to interpret 

the consistency between SMOS and the other remotely sensed products. This effect of the 

vegetation has been quantified for the first time at the global scale for the three microwave 

sensors. These two chapters also showed that both SMOS and ASCAT (AMSR-E) had 

complementary performances and, thus, have a potential for datasets fusion into long-term 

SSM records. In Chap. VI of the dissertation, with the general purpose to extend back the 

SMOSL3 SSM time series and to produce an homogeneous SM product over 2003-2014 

based on SMOS and AMSR-E, we investigated the use of a multiple linear regression model 

based on bi-polarization (horizontal and vertical) brightness temperatures (TB) observations 

obtained from AMSR-E (2003 - 2011). The regression coefficients were calibrated using 

SMOSL3 SSM as a reference over the 2010-2011 period. The resulting merged SSM dataset 

was evaluated against an AMSR-E SSM retrievals and modelled SSM products (MERRA-

Land) over 2007-2009. These first results show that the multi-linear regression method is a 

robust and simple approach to produce a realistic SSM product in terms of temporal variation 

and absolute values. In conclusion, this PhD showed that the potential synergy between the 

passive (AMSR-E and SMOS) and active (ASCAT) microwave systems at global scale is 

very promising for the development of improved, long-term SSM time series at global scale, 

such as those pursued by the ESA’s CCI program. It also provides new ideas on the way to 

merge the different SSM datasets with the aim of producing the CCI (phase 2) long-term 

series (a coherent "SMOS-AMSR-E" SSM time series for the period 2003 -2014), that will be 

evaluated further in the framework of on-going ESA projects. 

 

 

 

 

 

Keywords: Soil moisture, Global-scale, Hydrology, Microwave remote sensing, SMOS, 

ASCAT, AMSR-E, Statistical evaluation 
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Évaluation à l'échelle globale d'une variable 

hydrologique mesurée par télédétection: les produits 

d’humidité du sol du satellite SMOS 

 

 

Re sume  en Français 

 

 

L'humidité du sol (SM) contrôle les bilans d’eau et d’énergie des surfaces 

continentales et joue ainsi un rôle clé dans les domaines de la météorologie, l'hydrologie et 

l'écologie. La communauté scientifique en télédétection micro-ondes a fait des efforts 

considérables pour établir des bases de données globales de l’humidité du sol en surface 

(SSM) découlant d'instruments micro-ondes actifs et passifs. Parmi ces instruments, SMOS 

(Soil Moisture and Ocean Salinity), lancé en 2009, est le premier satellite passif conçu 

spécifiquement pour mesurer SSM à partir d’observations en bande L (1.4 GHz) à l'échelle 

globale. La validation des données SMOS SSM sur différentes régions climatiques et pour 

des conditions environnementales variées est une étape indispensable avant qu’elles soient 

utilisées de manière opérationnelle. En effet, une meilleure connaissance de la précision des 

estimations de SSM et des incertitudes associées permettra non seulement d'améliorer les 

produits SMOS SSM, mais aussi d'optimiser les approches de fusion de données utilisées 

pour créer des produits multi-capteurs long terme. De tels produits sont développés dans le 

cadre du programme Climate Change Initiative (CCI) de l'Agence spatiale européenne (ESA) 

pour l’ensemble des variables climatiques essentielles (ECV), dont SSM. A la suite des 

chapitres d'introduction I à III, les résultats de cette thèse sont présentés en trois chapitres. Le 

chapitre IV présente une comparaison des produits SSM issus des capteurs passifs SMOS 

(bande L) et AMSR-E (bande C) en prenant pour référence les estimations SSM du système 

d'assimilation SM-DAS-2 du Centre Européen pour les Prévisions Météorologiques à Moyen 

Terme (CEPMMT). Cette évaluation est menée sur la période d’observation commune à 

SMOS et AMSR-E (2010- 2011), en utilisant des indicateurs classiques (corrélation, RMSD, 
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Biais). En parallèle, le chapitre V présente une comparaison des produits SMOS SSM avec 

les produits SSM issus du capteur actif ASCAT en bande C en utilisant comme référence les 

simulations SSM d’un modèle des surfaces continentales (MERRA-Land), et en utilisant des 

indicateurs classiques, des méthodes statistiques avancées (triple collocation), et des 

diagrammes de Hovmöller sur la période 2010-2012. Ces deux évaluations ont montré que la 

densité de la végétation (paramétrée ici par l’indice foliaire LAI) est un facteur clé pour 

interpréter la cohérence entre le produit SMOS et les produits AMSR-E et ASCAT. Cet effet 

de la végétation a été quantifié pour la première fois à l’échelle globale pour les trois capteurs 

micro-ondes. Ces deux chapitres ont également montré que les trois capteurs SMOS, AMSR-

E et ASCAT ont des performances complémentaires selon la densité de végétation et qu’il y a 

ainsi un potentiel intéressant en terme de fusion des jeux de données micro-ondes passifs et 

actifs. Dans le chapitre VI, avec l’objectif général d’étendre vers le passé les séries de 

données SSM de SMOSL3 et de développer un jeu de données SSM homogène sur 2003-

2014, nous avons évalué l’utilisation d’une approche de régression linéaire multiple 

appliquée aux mesures de températures de brillance de AMSR-E (2003 - 2011). Les 

coefficients de régression ont été calibrés avec les produits SSM issus de SMOS sur 2010-

2011. Le produit SSM résultant, qui fusionne les observations SMOS et AMSR-E, a été 

évalué par comparaison avec un produit SSM AMSR-E et les produits SSM MERRA-Land 

sur 2007-2009. Ces résultats préliminaires montrent que la méthode de régression linéaire est 

une approche simple et robuste pour construire un produit SSM réaliste en termes de 

variations temporelles et de valeurs absolues. En conclusion, cette thèse a montré que le 

potentiel de synergie entre les systèmes micro-ondes passifs (AMSR-E et SMOS) et actifs 

(ASCAT) est très prometteur pour le développement et l'amélioration de longues séries 

temporelles SSM à l'échelle mondiale, telles que celles produites dans le cadre du programme 

CCI de l'ESA. Elle a également fourni de nouvelles idées sur la façon de fusionner les 

différents ensembles de données de SSM dans le but de produire une série CCI SSM (Phase 

2) long terme (une série cohérente combinant SMOS et AMSR-E sur la période 2003-2014), 

qui va être évaluée dans le cadre de projets ESA en cours. 

 

 

 

 

Mots-clés: Humidité du sol, Échelle globale, Hydrologie, Télédétection micro-ondes, 

SMOS, ASCAT, AMSR-E, Évaluation statistique 
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1.1 Background and Motivation 

Soil moisture (SM) is a key variable in better understanding of the land-atmosphere 

interactions because it influences the partitioning of precipitation into infiltration and runoff 

and the partitioning of energy into sensible and latent heat (Daly & Porporato, 2005; Pielke & 

Niyogi, 2010; Western et al., 2002). Spatio-temporal variabilities of SM are critical and have 

direct applications in hydrology, agronomy, water resources managing (Blöschl  et al., 2009; 

Dobriyal et al., 2012), weather prediction and climate change studies (Leese et al., 2001; 

Seneviratne et al., 2010), flood analyses and drought monitoring (Bolten et al., 2010; Michele 

& Salvadori, 2002), irrigation operation, and soil erosion studies (Fu et al., 2000; Luk, 1985). 

In addition, SM initial conditions are crucial for the quality of hydrological models and 

Numerical Weather Prediction (NWP) at all range, including short range, monthly, and 

seasonal forecasts (Beljaars et al., 1996; de Rosnay et al., 2012; Drusch, 2007; Koster et al., 

2004a; Koster et al., 2006; Panegrossi et al., 2001).  

Consequently, there have been broad efforts to estimate SM in numerous research 

areas. Researchers have tried to estimate SM as accurately as possible using in situ 

observations (Dirmeyer et al., 2006; Robock et al., 2000), land surface models (wherein the 

accuracy of SM estimates depends on the forcing datasets and construction of the model), and 

Remote Sensing. Remote Sensing with high spatio-temporal coverage overwhelms the 

limitations and weakness of the other sources of information. Remote Sensing is an 

interesting source of information about SM as it offers the opportunity to obtain global and 

repetitive surface SM (SSM) estimates derived from satellite-based microwave sensors 

(Bartalis et al., 2007a; Kerr et al., 2001; Njoku et al., 2003; Owe et al., 2008). The main 

disadvantages of the remotely sensed datasets are their limitation to the top few centimeters of 

soil and the spatial and temporal gaps in dense vegetation and high surface roughness regions. 

Two types of microwave sensors offer the opportunity to retrieve SSM information: 
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radiometers (passive) and radar (active) sensors (scatterometers or SAR system). Radar and 

radiometers sensors measure surface backscatter and brightness temperatures (TB) signals, 

respectively, which are mainly determined by the soil dielectric constant, from which SSM 

can be derived (Njoku et al., 2002; Ulaby et al., 1996). Various radiometer and radar sensors 

have been used to measure SSM, and space-borne missions with new radiometer and radar 

sensors are presently being developed (Bartalis et al., 2007a; Entekhabi et al., 2010; Kerr et 

al., 2001; Njoku et al., 2003). Historically, passive microwave sensors were first used, starting 

with the Scanning Multichannel Microwave Radiometer (SMMR; 6.6, 10.7 , 18.0 21, and 37 

GHz channels; (Wang, 1985)), which operated on Nimbus-7 between 1978 and 1987, then the 

Special Sensor Microwave Imager (SSM/I; 19.4, 22.2, 37.0, and 85.0 GHz channels) of the 

Defense Meteorological Satellite Program which started in 1987. Later passive sensors 

include: the microwave imager from the Tropical Rainfall Measuring Mission (TRMM; 10, 

19 and 21 GHz channel; (Bindlish et al., 2003; Gao et al., 2006)), the Advanced Microwave 

Scanning Radiometer on Earth Observing System (AMSR-E; from 6.9 to 89.0 GHz; (Njoku 

& Li, 1999)) which operated on the AQUA satellite between 2002 and 2011, and Coriolis 

Windsat which started in 2003 (Parinussa et al., 2011b). More recently, the Soil Moisture and 

Ocean Salinity (SMOS) was launched on November 2, 2009 (Kerr et al., 2012) and the 

upcoming SMAP (Soil Moisture Active/Passive) mission is scheduled for launch in 

November 2014 (Entekhabi et al., 2010).  

Besides passive microwave sensors, active microwave sensors are also useful to 

retrieve SSM including, but are not limited to, the European Remote Sensing (ERS-1) 

Scatterometer which is operated since 1992, and its copy on ERS-2 which started collecting 

data from March 1996, and the Advanced Scatterometer (ASCAT) on board the 

Meteorological Operational satellite programme (METOP), METOP-A was launched in 2006 

(Bartalis et al., 2007a) followed by METOP-B in 2012.  
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The (European Space Agency) ESA's Programme on Global Monitoring of Essential 

Climate Variables (ECV), known as the Climate Change Initiative (CCI), and the European 

Space Agency's Water Cycle Multi-mission Observation Strategy (WACMOS) merged 

several active and passive i.e. SMMR, SSM/I, TMI, AMSR-E, ERS-1/2, and ASCAT data 

(Liu et al., 2011) to produce long-term and consistent time series of SSM (1978-2010), with a 

spatial resolution of 0.25° x 0.25°. This product has been available since June 2012 and has 

been of interest for researchers to study the long-term trends of SSM (Albergel et al., 2013b; 

Seneviratne et al., 2010). 

The SMOS satellite, among all the aforementioned passive microwave sensors, is the 

first ever satellite dedicated and specifically designed to measure SSM, over the land surfaces, 

and surface ocean salinity (SSS) at L-band on a global basis (Kerr et al., 2010). L-band (1.4 

GHz), within the microwave bands protected for remote sensing applications, has been 

recognized to be well-suited to monitoring SSM owing to better penetration through 

vegetation and reduced atmospheric effects on their signals (Kerr et al., 2001; Njoku & 

O'Neill, 1982; Wang & Schmugge, 1980). As the attenuation effects of the vegetation layer 

overlaying the ground decrease with increasing wavelength, L-band is theoretically more 

optimal for sensing SSM than C-band (4–8 GHz) or higher frequencies. Furthermore, the 

effective SSM sampling depth at L-band (~0-3cm; Escorihuela et al., 2010) is larger than at 

C-band (~0-1cm). In the literature, the compared capabilities of remote sensing at C-band and 

L-band to monitor SSM were established from in situ observations and theory (Ulaby et al., 

1986; Wigneron et al., 1993). Therefore, it is likely the SMOS SSM products are useful and 

of high priority in most operational hydrologic models for agricultural applications, flood 

forecast and water quality management.  

Two SSM products have been released since the launch of SMOS: (i) the Level 2 

SMOS SSM products (SMOSL2), distributed by the ESA, which is derived from the multi-
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angular and fully polarized bi-polarization SMOS TB observations and provided as swath-

based products and more recently (ii) the Level 3 SMOS SSM products (SMOSL3), 

distributed by the Centre Aval de Traitement des Données SMOS (CATDS), which is a 

gridded product computed from the SMOS TB observations (Jacquette et al., 2010). The 

general principle of the algorithm used to compute SSM in both SMOSL2 and SMOSL3 is 

almost similar (Jacquette et al., 2010). However, in the SMOSL3, the quality of SSM 

products is enhanced by using multi-orbit retrievals (Kerr et al., 2013b), and provided as 

global maps in a more friendly format (NetCDF) for the final users. Evaluation of both 

SMOSL2 and SMOSL3 SSM products, as for any remote sensing products, is needed to guide 

their correct use, and to improve our understanding of their strengths and weaknesses over a 

large spectrum of climate and environmental conditions across the world. Evaluation not only 

assesses the accuracy and reliability of the estimates and their scientific utility, but also 

defines possible limits of satellite instruments.  

Several studies have evaluated SMOSL2 SSM products over different regions using in 

situ observations, model-based data, and remote sensing products at the local, continental, and 

global scales (Al Bitar et al., 2012; Albergel et al., 2011; Albergel et al., 2012; Collow et al., 

2012; Dall'Amico et al., 2012; Dente et al., 2012; Jackson et al., 2012; Kaihotsu et al., 2013; 

Lacava et al., 2012; Leroux et al., 2013a; Leroux et al., 2013b; Parrens et al., 2012; Peischl et 

al., 2012; Pierdicca et al., 2013; Sanchez et al., 2012; Wigneron et al., 2012). Nevertheless, 

there is no evaluation was done to evaluate the newly re-processed SMOSL3 SSM products, 

due to their recentness, with the exception of (Su et al., 2013) who evaluated SMOSL3 with 

AMSR-E and ASCAT against in-situ observations from the Murrumbidgee Soil Moisture 

Monitoring Network for the 2010-09/2011 period. 

At the local scale, for instance, Lacava et al. (2012) have assessed SMOSL2 SSM 

products through a comparison with modelled SSM and in situ observations from three sites 
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situated in Luxemburg and Italy. Collow et al. (2012) and Jackson et al. (2012) have 

performed an evaluation of the SMOSL2 SSM products over the central USA and four 

watersheds located in the USA, respectively. Leroux et al. (2013b) compared the SMOSL2 

SSM products with AMSR-E, ASCAT, and the European Centre for Medium range Weather 

Forecasting (ECMWF) SSM products, for the year 2010, against in situ observations over 

four watersheds located in the USA. Sanchez et al. (2012) and Wigneron et al. (2012) have 

evaluated the SMOSL2 SSM products with SSM observations obtained from the 

REMEDHUS Network and the VAS (Valencia Anchor Station) site, respectively, located in 

Spain. Dente et al. (2012) have validated SMOSL2 SSM products over the Maqu region on 

the Tibetan Plateau in China and the Twente region in The Netherlands. Peischl et al. (2012) 

have evaluated SMOSL2 SSM products with SSM observations obtained from the Australian 

Airborne Experiments for SMOS (AACES) located in South-East Australia. More recently, 

Kaihotsu et al. (2013) have evaluated SMOSL2 SSM products using in situ observations on 

the Mongolian Plateau for the 2010-2011 period. Most of these studies came to almost the 

same conclusion that SMOS had a Root Mean Square Error (RMSE) close to the accuracy 

requirement of SMOS i.e. 0.04 m
3
/m

3
, the SSM dynamics were well captured by SMOS, and 

the SMOS was a bit dryer than the other datasets. 

At the regional and continental scales, for instance, Albergel et al. (2012) have 

evaluated the SMOSL2 SSM products, together with ASCAT and SM-DAS-2 SSM products 

(produced at ECMWF ) against in situ observations from several stations located in Australia, 

Africa, the USA, and Europe during 2010. Albergel et al. (2012) concluded that ASCAT and 

SMOS had a an average correlation of 0.55 with in-situ datasets. Parrens et al. (2012) have 

compared SMOSL2 SSM products with land surface model simulations (ISBA LSM) over the 

whole of France. Al Bitar et al. (2012) have evaluated SMOSL2 SSM products using in situ 

observations obtained from the Soil Climate Analysis Network (SCAN) and the Snowpack 
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Telemetry (SNOTEL) sites located in North America. More recently, Pierdicca et al. (2013) 

have compared SMOSL2 SSM products with only ASCAT SSM products over Europe and 

extreme North Africa during the 2010 - 03/2012 period. Pierdicca et al. (2013) have 

demonstrated that the two products correlated fairly to each other and their consistency 

depends on season and surface land cover. 

At the global scale, there is only, to date, one dedicated SSM study that has been 

conducted to evaluate the SMOSL2 SSM products. Leroux et al. (2013a) performed, at the 

global scale, a comparison between the SMOSL2 SSM products against AMSR-E and 

ASCAT SSM products taking ECMWF model simulations as a benchmark for the year 2010. 

This study showed that SMOS was better in terms of RMSE values than ASCAT and AMSR-

E datasets over Australia, North America, and Central Asia.  

Four issues can be identified in the review of the existing evaluations of SMOS SSM 

products, summarized in the previous paragraphs:   

(i) The evaluations and comparisons were generally made with observations from 

in situ networks, which are limited in space and time. In the natural 

environment, there is a large spatio-temporal variability of SM, which depends 

on the combined influence of hydrometeorology, soil hydraulic properties, 

climate, and vegetation. In situ observations have a low spatial density so that 

point-based observations cannot represent accurately the spatial distribution of 

SSM (Dorigo et al., 2011), therefore inadequate to carry out a global 

evaluation and draw global conclusions. In contrast, land-surface models are 

able to simulate global SSM products (Dirmeyer et al., 2006; Georgakakos & 

Carpenter, 2006) and their spatial resolutions are often in agreement with the 

resolution of the remotely sensed products. For instance, several global SSM 

datasets produced from modelling or assimilation approaches are becoming 
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readily available (e.g., SM-DAS-2, MERRA-Land which is a NASA 

atmospheric reanalysis) in 2013. However, little is known about the reliability 

of those products at the global scale and how they compare to the remote 

sensing datasets (Draper et al., 2009b; Reichle et al., 2007; Sabater et al., 

2007). Hence, more research is required to advance our understanding of the 

capabilities of SSM products from remote sensing and from models to assess 

the uncertainties associated with them. 

(ii) The evaluations and comparisons were only based on the SMOSL2 SSM 

retrievals. However, as already mentioned, new recently re-processed 1-day 

global SSM product i.e. SMOSL3 provided by the CATDS with enhancement 

of better SSM estimations at revisited locations and increasing of SMOS 

retrieval coverage (Jacquette et al., 2010) has been released. 

(iii) Most of the aforementioned studies addressed the evaluation only in the year 

2010, evaluation should include longer period so that the temporal span can be 

more reasonable to draw any conclusive statistics. 

(iv) None of the aforementioned studies compared the capabilities of remote 

sensing at C-band and L-band to monitor SSM at the global scale. 

The motivation for this doctoral research work relies on the fact, discussed above, that 

there has been limited evaluation of the state of the art SMOS SSM product, using SSM 

products retrieved from other active or passive microwave sensors or simulated from land 

surface models. It is crucial to evaluate their accuracy at the global scale and for a range of 

climate and environmental conditions across the world before developing operational 

applications based on the SMOS observations, thereby improving the knowledge of errors in 

the satellite data across space and time. In addition, the inter-comparisons of SMOS SSM 

products with other satellite and model SSM products at the global scale help in 
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understanding the similarities and differences between the various products and in learning 

the regions where they agree or differ. Moreover, a successful evaluation of the SMOS SSM 

datasets at the global scale would be a significant contribution to improving the prediction 

capability of hydrologic models, thus, leading to improvement in SM estimation through data 

assimilation (Reichle et al., 2008).  

Furthermore, SSM sensors do not deliver decadal homogeneous products. SMOS SSM 

products, for instance, are only available since 2010; whereas AMSR-E SSM products are 

only available from 2002 to 2011. Nevertheless, for several applications such as climate 

change trend analysis, flood analysis, and drought monitoring, a historical record is required. 

The latest CCI program SSM product did not consider SMOS in its first phase programme, 

due to its recentness. However, SMOS presents an innovative interferometric antenna 

concept, dedicated for SSM monitoring, which is a promising technology for SSM retrievals. 

Therefore, SMOS should be considered to be merged with the other existing microwave 

remotely sensed products to produce long-term SSM time series.  

1.2 Dissertation objectives 

The main science objectives in the context of the global evaluation of SMOS SSM 

products have been already raised in the motivation of this doctoral dissertation. Very little 

research has been done to evaluate the performance of the newly reprocessed SMOSL3 SSM 

retrievals at the global and regional scales. The overall goal of this doctoral dissertation is to 

complement the existing assessment and evaluations of the global SMOSL3 SSM estimates 

by carrying out a comprehensive evaluation using longer time series (2010-2012) that also 

include modelling products. This study is expected to contribute to the evaluation/validation 

activities of SMOS SSM products via SM-DAS-2 and MERRA-Land SSM products. In 
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connection to the above introduction, the following research objectives have been addressed 

in this doctoral dissertation:  

(i) Conducting global comparisons between SMOS (L-band) SSM products and 

other existing microwave passive (AMSR-E; C-band) and active (ASCAT; C-

band) SSM products using models SSM simulations (MERRA-Land and SM-

DAS-2) as benchmarks with the following purposes: 

a. A better understanding of the quality of the SSM products retrieved from 

passive and active techniques at L- and C-bands at the global scale.  

b. Evaluating their ability to capture the spatial and temporal dynamics of 

SSM at the global scale (where are the significant differences and 

consistencies in the performances between the different satellite SSM 

products?). 

c. Evaluating the effects of the biome types and vegetation density, 

parameterized here by the leaf area index (LAI), on the different SSM 

retrievals (how the accuracy of the SSM retrievals is impacted by 

vegetation?). 

(ii) Developing a global and a long record i.e. 2003-2014 of SSM dataset which is 

coherent across different sensors (more specifically: Are statistical regression 

approaches a good tool to merge the AMSR-E and SMOS SSM data to produce 

realistic and long term SSM time series in terms of variations and absolute 

values?). 

These objectives are accomplished as separate studies resulting in journal articles. A 

brief description of each paper follows in the next Section. 
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1.3 Dissertation outline 

This doctoral dissertation consists of seven chapters, which are organized as follows: 

Chapter I has just given brief background and the motivation, objectives, and scope of this 

research work.  

Chapter II gives the theoretical background regarding SM. It covers aspects such as: 

SM definition, its importance, different types of measurements (including in situ, remote 

sensing, models, and assimilation techniques). 

Chapter III gives an overview on the SMOS mission and its products. It describes 

shortly the basics of the SSM retrieval algorithm and the main types of existing SMOS 

products. This chapter includes also a brief overview of the AMSR-E and ASCAT missions 

and their SSM products. 

Chapter IV performs a comparative analysis of the SMOSL3 SSM products along with 

another SSM product derived from the observations of the AMSR-E at C-band (this latter 

product is referred to as AMSRM). The AMSRM product is to date the reference SSM 

product produced from passive microwave remotely-sensed sensors (Owe et al., 2008). SM-

DAS-2, a SSM product produced by ECMWF Land Data Assimilation System was used as an 

independent reference to monitor the quality of both SMOSL3 and AMSRM SSM products. 

The present study was carried out from 03/2010 to 09/2011, a period during which both 

SMOS and AMSR-E products were available at the global scale. Three statistical metrics 

(considering both original SSM data and anomalies) used for the evaluation were the 

correlation coefficient (R), the Root Mean Squared Difference (RMSD), and the bias. In this 

chapter, the impact of the biome types and vegetation density on the performance of the 

SMOS and AMSR-E retrievals was analyzed at the global scale. 

In Chapter V, the performance of the SMOSL3 dataset is further evaluated against 

SSM retrievals made by an active C-band system. This chapter performs a global-scale 
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evaluation of the SMOSL3 SSM products and a satellite-based active microwave SSM 

datasets (ASCAT) with respect to modelled surface SSM simulated by MERRA-Land. The 

SSM time series retrieved from ASCAT is to date the reference product used in the CCI 

project. The evaluation period in Chapter IV was extended to 3 years (2010–2012) in this 

Chapter. The relationship between the global-scale SSM products was studied using (1) a time 

series statistics (considering both original SSM data and anomalies), (2) a space-time analysis 

using Hovmöller diagrams, and (3) a triple collocation error model. Chapter IV and V both 

have in common that the remotely sensed data were compared to a land surface model.  

In Chapter VI, the complementary performances between AMSR-E and SMOS shown 

in Chapter IV motivated us to produce a merged SSM dataset. For that purpose, this Chapter 

investigates the use of physically based multiple-linear regressions to retrieve a global and 

long term SSM record based on a combination of bi-polarization (horizontal and vertical) TB 

observations from the AMSR-E and SMOS sensors. Chapters IV to VI address the three major 

research objectives mentioned earlier. Each chapter is considered as an independent study 

having its own introduction to conclusion, but they are all connected under the umbrella of 

SMOS SSM data evaluation. Some overlap exists between the Chapters IV-VI, this was 

unavoidable since each chapter is a self-explanatory based manuscript that has been or will be 

published in scientific journals. 

Finally, Chapter VII concludes this dissertation and summarizes the results obtained 

from all the chapters. Limitations encountered in this research are discussed and some 

directions/recommendations for the future research are provided.   
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Chapter II 
 

2.    Soil moisture and its 
importance/measurements 
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2.1 Soil moisture and its importance 

2.1.1 Soil moisture 

The soil medium is often divided into three phases consisting of liquid, gaseous, and 

solid phases. Soil matter, the sum of the mineral matter and the organic matter, represents the 

solid phase amounting about to 50 % of the entire soil medium (Hillel, 1980). Pore space 

represents the other 50 %, which consists of the liquid phase (i.e., the soil water) and the 

gaseous phase (i.e., the soil atmosphere) (Hillel, 1980). The components of the soil medium 

are displayed in Fig. 2.1. Pore spaces between soil particles can be filled by air or water, the 

latter is often referred to as soil moisture and is also known as soil water content. In other 

words, the quantity of water that is present in the unsaturated zone, held in the soil between 

the surface and the groundwater level, is known as soil moisture. The soil water moves freely 

down by gravity and up by capillary force. It is then extracted by plant roots, evaporates at the 

surface, or recharges the groundwater (Strangeways, 2000). It is a small fraction of the 

world's fresh water supply (Dingman, 2002), and it is generally expressed in gravimetric units 

(g/cm
3
), volumetric units (m

3
/m

3
; m

3
 water per m

3 
bulk soil volume) or percent (% vol.) 

(Dingman, 2002; Smith & Mullins, 2000). 

Soil is saturated when the pore spaces between the soil particles are totally filled by 

water without any air pockets (See Fig. 2.1). This water, within a day or longer, drains-with 

the exception if the water table is within the soil which occurs quite often- downwards and 

away under gravity and leaves the soil at the so called “field capacity” with certain quantity of 

water that holds against gravity (Twarakavi et al., 2009; Veihmeyer & Hendrickson, 1931). 

At this point, the spaces between the soil particles are filled with a mixture of water and air 

pockets (see Fig. 2.1). When the plants can no longer extract the necessary water for growth 
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and therefore suffer and they start to wilt before dying, the soil is described as at “wilting 

point” (see also Fig. 2.1) (Briggs & Shantz, 1912).  

 

 

Fig. 2 - 1 Components of soil medium (After O'Geen, 2012). 

 

 

The capacity of the soil to store water depends on the size, type, shape, the properties 

of the solid phase (in particular its electrical charges), and the continuity of the pores of the 

soil. Temporal variations and spatial distribution of soil moisture can be influenced by 

precipitation, soil texture, topography, organic matter content, porosity, soil structure, and 

vegetation and land cover. Soil texture (i.e. percentage of clay, sand, and silt) and soil 

structure control the water-holding capacity while topography (i.e. variations in slope and 

aspect) affects soil moisture distribution i.e. soil moisture movements. Table 2.1 presents the 

influence of the relief elements (aspect & slope) on the spatial distribution of soil moisture. 
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The soil moisture values represent the ratio of soil moisture on a slope and soil moisture on a 

flat surface with the same type of soil and vegetation for four aspects (North, South, East and 

West) and for four slope parts(upper, middle, lower and the foot of a slope) for summer 

period of the year (Svetlitchnyi et al., 2003). Soil, for instance, is dryer at flat surface than at 

foot of slop, and the slopes face west and south are dryer than the slopes which face east and 

north, this may be explained by the relatively high radiation exposure of the sun (Svetlitchnyi 

et al., 2003). The effects of north and south may be not equal in the Northern and Southern 

Hemisphere. 

 

Vegetation (i.e. vegetation type and density) influences infiltration, runoff, and 

evapotranspiration, thus, influences the variations of soil moisture at different space and time-

scales (English et al., 2005). In addition, climate (i.e. precipitation, solar radiation, wind, and 

humidity) controls the dynamics of soil moisture. Precipitation is the most important climatic 

forcing for soil moisture content and its distribution, which induces along with evaporation 

the trends in aridity and saturation of soil (D'Odorico & Porporato, 2004; Koster et al., 2003). 

 

Table 2 - 1 Typical effects of slope and aspect on soil moisture values (relative units) in the 

upper soil layer (After Svetlitchnyi et al., 2003) 

Relief elements 
Convex slope 

(Aspect at) 
Straight or concave slope 

(Aspect at) 

 North East South West North East South West 

Flat surface 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Upper part of  
a slope 

1.10 1.10 0.95 0.95 1.00 0.83 0.56 0.61 

Middle part of  
a slope 

1.00 1.00 0.79 0.79 1.00 1.00 0.80 0.80 

Lower part of  
a slope 

1.00 1.00 0.63 0.66 1.17 1.17 1.00 1.00 

Foot of a slope 1.50 1.50 1.24 1.24 1.61 1.61 1.30 1.30 
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2.1.2 General importance of soil moisture for the environment and our 

climate system 

 
Water is a vital source of all life on Earth’s climate system. It circulates continuously 

between oceans, the atmosphere, and land surface due to the solar energy. This circulation 

and conservation of the Earth's water, known as the water cycle (see Fig. 2.2), is a critical 

component for our climate system.   

 

 

 

 

Fig. 2 - 2  The Global Water Cycle. Adapted from Houser et al. (2007). 
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A schematic diagram of this global water cycle with the quantities of water volumes 

and fluxes are shown in Fig. 2.3. Fig. 2.3 illustrates the qualitative proportions of the global 

water reservoirs and transports. However, precise values are not known yet; therefore, the 

specified numbers can differ from others given in the literature. 

 

 

 

 

Fig. 2 - 3  Schematic diagram of the Earth’s water cycle. Reservoir volumes (boxes) are 

stated in 10
3
 km

3
, water fluxes (arrows) in 10

3
 km

3
 per year. Adapted from Oki (1999). 

 

Although the soil moisture only represents a small proportion (0.05 %) of the total of 

fresh water volume, as can be seen in Fig. 2.3 compared to the other components, its influence 

on the global water cycle is of great importance and it plays a major role in the water cycle. 

Soil moisture is a key variable in the exchanges of water, energy, carbon between the land 
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surface interface and the atmosphere. It is also an important factor in many fields: in 

atmospheric circulation (Walker & Houser, 2004), as soil moisture influences energy and 

mass transfer across the landscape boundary (Arora & Boer, 2006; Findell & Eltahir, 2003), in 

water resources management, for instance in flood analyses and drought monitoring (Michele 

& Salvadori, 2002), in agricultural management, by defining appropriate irrigation amounts 

and intervals (Hanson et al., 2000), in soil science, it is a key parameter in ecology and 

biogeochemistry to determine potential land slide and can help in soil erosion’s predictions in 

semi-arid areas (Kiome, 1992), and in plant biology, soil moisture is the key factor for plant 

water stress (Veihmeyer & Hendrickson, 1950). 

More specifically, soil moisture can be of significant importance resource for plants as 

well as for human activities: 

a) The soil moisture of the root zone is a limiting factor for plant growth, and it 

is optimal when not too dry and not too wet over a long time period for plants to survive. 

Therefore, information of the appropriate amount of soil water is essential for cultivation of 

plants and agriculture in general. This helps in irrigating crop fields more efficiently. 

Furthermore, information of soil moisture patterns helps agronomist to enhance irrigation’s 

scheduling and better crop yield predicting in arid and semi-arid areas (Tao et al., 2003). 

b) The soil moisture is a variable of major importance to assess the potential for 

risks in the case of extreme events. Soil moisture conditions (excessively saturated or dry) 

can be signs of warning of subsequent flooding (as the occurrence and intensity of flooding 

are strongly influenced by the soil’s ability to take up a certain amount of water) or drought 

(Dingman, 2002; Richter & Semenov, 2005).  

c) Soil moisture plays an important role in the hydrological models, as it 

controls the re-distribution of the precipitation into runoff and infiltration. Therefore, 
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accurate observations of soil moisture are essential before estimating water fluxes (Parajka 

et al., 2006). 

d) Soil moisture plays an important role in meteorological and climate models, 

as its temporal variation and spatial distribution play a major role in the partitioning of the 

solar energy into sensible and latent heat fluxes at both global and local scales (Robock et 

al., 1998). Soil moisture availability plays a significant role in the biases of surface 

temperature in climate models (Cheruy et al., submitted for publication). Accurate estimates 

of soil moisture are necessary for improving numerical weather predictions, whereas 

inaccurate soil moisture initialization leads to large errors in climate predictions (Robock et 

al., 1998; Rowntree & Bolton, 1983). 

e) Soil moisture spatio-temporal variations over land influence runoff, inflow, 

controls evaporation and transpiration, thus regulates the extent of groundwater recharges 

(Mohanty & Skaggs, 2001). More generally, soil moisture influences the discharge which is 

the most accessible fresh water resource. 

2.2 Measurements of soil moisture  

There are different methods for soil moisture measurements employed for different 

applications. These include measurements techniques: (i) direct and indirect in-situ 

measurements (e.g. radiological methods, neutron attenuation, gamma absorption, soil-water 

dielectrics, microwave probe, etc.) and (ii) emerging technologies (remote sensing), and 

estimation techniques: (i) land surface models and (ii) integration of the previous methods in 

the so called assimilation. All these methods differ significantly by the accuracy, complexity, 

technique, and spatio-temporal scales. These methods are briefly presented in the following 

sections. 
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2.2.1 In-situ measurements 

In-situ measurements methods have several common advantages including, but not 

limited to, relatively accurate for the sampling point and measurements of soil moisture could 

be taken at several depths. On the other hand, there are common disadvantages including, but 

not limited to, local scale and thus cannot be representative for larger scales, time consuming, 

and costly. Nevertheless, models and remote sensing up to date use in-situ measurements to 

calibrate and validate their predictions and observations, respectively. 

Thermogravimetric method (Marshall & Holmes, 1988) is the most common classical 

method to measure volumetric water content. The equation used to compute the water content 

(∅𝑚) on a mass basis can be written as follows: 

  ∅𝑚 =
𝑚𝑤 

𝑚𝑠
                                                                                                                  2 − 1 

where: 

𝑚𝑤   is mass of water lost upon a sample 24 hour drying in an oven at 105 °C and 

𝑚𝑠     is a constant mass of the sample before drying. 

Whereas the equation used to compute the water content on a volumetric basis (∅𝑣), 

most commonly used, can be written as follows (Smith & Mullins, 2000): 

 

∅𝑣 = ∅𝑚

𝜌𝑏

𝜌𝑤
                                                                                                                2 − 2 

where: 

 𝜌𝑏  is the dry bulk density of the soil (kg/m
3
) and 

 𝜌𝑤    is the density of the water (1000 kg/m
3
). 
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If the volume of soil is known (sampled by coring), volumetric water content (∅𝑣) can 

be computed as follows (Smith & Mullins, 2000): 

∅𝑣 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑒𝑡 𝑠𝑜𝑖𝑙−𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 

𝑠𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 ∗ 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟  
                                                              2 − 3                                               

 

This method has several advantages being simple, reliable, inexpensive (but not for 

regional or global scales), and can be easily calculated. This method is, however, not free 

error as some clay soils still contain water after oven drying which leads to an 

underestimation of water content. Similarly, some organic soils loose some weight due to 

organic matter changes during heating, which leads to an overestimation of water content 

(Smith & Mullins, 2000). 

Other indirect methods have been developed to overcome the limitations of thermo-

gravimetric method with more advantages such as repetitiveity, quickness, and less disruption 

(Schmugge et al., 1980). The basic principle of these methods is that certain characteristics of 

the soil are functions of the soil moisture, thus monitoring these properties leads to soil 

moisture measurements (Strangeways, 2000). Some of these methods are briefly summarized 

in Table 2.2. 
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Table 2 - 2 Types of in situ soil moisture measurement techniques (Schmugge et al., 1980; Smith & Mullins, 2000; Walker et al., 2004; Zazueta 

& Xin, 1994) 

Technique Measurement of SM  Strengths Weaknesses 

Thermo-  
gravimetric  

This method involves taking a volume 

of soil, accurately weighing it, 

completely drying it out in an oven, 

re-weighing the dry sample, and 

calculating soil moisture percentage 

from the weight loss. 

Accurate measurements - simple procedure to 

compute soil moisture- not costly - and not 

dependent on salinity and soil type. 

Time consuming and pain staking procedure - 

difficult and destructive sampling - inapplicable to 

repetitive measurements and to automatic control - 

must know dry bulk density to transform data to 

volume moisture content- costly for regional and 

global scales. 

Nuclear 
techniques 
(Neutron 
scattering) 

Based on the relationship between the 

emitted neutrons with the hydrogen 

nuclei in the soil water.  

Average soil moisture with depth can be 

obtained - reliable - automatic readings - non-

destructive - water can be measured in any 

phase. 

Poor depth resolution - costly - radiological safety 

procedures (radiation hazard) required - special 

measures necessary to deal with readings in 

surface soil - care required in access tube 

installation - must calibrate for different types of 

soils - access tubes must be installed and removed 

- measurement partially dependent on physical 

and chemical soil properties - depth probe cannot 

measure soil water near soil surface. 

Soil dielectric 
method 
(1)Time 
Domain 
Reflectrometry 
(TDR) 

This method involves measuring the 

dielectric constant which is a function 

of soil moisture.  

Can be installed easily and at any depth - 

applicable for automatic monitoring - possible to 

perform long-term in situ measurements - 

portable - independent of soil texture, 

temperature, and salt content.  

Small zone of influence of TDR probes - the 

electronics to control and interpret the 

measurements are rather costly - high cost of 

equipment - only sensitive to the moisture around 

the probe - attenuation of the signal caused by 

salinity or highly conductive heavy clay soils.  

Soil dielectric 
method (2) 
Capacitance 
probes 

This method involves measuring the 

dielectric constant which is a function 

of soil moisture (Probes are inserted 

into the soil to the required 

measurement depth and the 

measurement can either be displayed 

on a meter or can be recorded using a 

Rapid and easy measurements - very sensitive to 

small changes in soil moisture - readings are 

instantaneous - precise resolution - theoretically, 

can provide absolute soil water content - water 

content can be determined at any depth. 

Small zone of influence for capacitance probes - 

high sensitivity to air gaps and regions 

surrounding the probes - long-term stability 

questionable. 
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Technique Measurement of SM  Strengths Weaknesses 

data logger). 

Thermal 
conductivity  

This method involves measuring the 

rate of heat dissipation which 

decreases with decreased water 

content.  

- This is only possible in soils with extreme salinity. 

Gamma ray 
attenuation   

Based on the scattering and absorption 

of the radiation which is related to the 

density of the matter. 

Not destructive - very good depth resolution 

with attenuation method but poor with 

backscatter techniques - can determine mean 

water content with depth - can be automated for 

automatic measurements and recording - can 

measure temporal changes in soil water. 

Costly - difficulty of use - radiological safety 

procedures necessary - Gamma ray scanners of the 

gamma ray method are only used in laboratory 

situations - restricted to soil thickness of 2.54 cm 

or less - affected by soil bulk density changes. 

Electrical 
Conductivity 
Probes and 
resistance 
Blocks 

Generally, soil conductivity decreases 

with decreasing soil moisture. 

Resistance or gypsum block sensors 

measure soil conductivity. 

Not costly and simple to use and install. Conductivity of the soil water is different in 

different soil types (alkaline or acid soils) and can 

change according to the sprays or fertilizers 

applied - resistance block sensors are generally 

used for trends in soil moisture changes only - 

sometimes requires calibration. 

Tensiometer 
(Soil Suction 
technique) 

This method involves measuring the 

water availability to plants and on the 

measurement of the capillary tension. 

Easy to design, install, and maintain - low-cost - 

readings are in units of negative pressure 

(suction) expressed as kilo Pascals - it is 

preferred for agriculture and irrigation of crops - 

provide additional information (water table 

elevation - the direction of fluxes in soil profile - 

and soil moisture tension) - operates for long 

periods if properly maintained, can be adapted to 

automatic measurement with pressure 

transducers - can be operated in frozen soil with 

ethylene glycol. 

Indirect measurements - very weak instrument - 

only measures soil water suction - 

predetermination of soil water characteristics 

essential - inaccuracies due to hysteresis of water 

content/potential relationship - limit range of 0 to -

0.8 bar not adequate for sandy soil - difficult to 

translate data to volume water content - automated 

systems costly and not electronically stable. 

Hygrometric  
techniques 

Based on the relationship between 

moisture content in porous materials 

and the relative humidity. 

Low-cost - low maintenance - wide soil matric 

potential range - well suited for automated 

measurements and control of irrigation systems. 

Declination of the sensing element through 

interactions with the soil components and a special 

calibration is required for the tested material. 
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It is noticed from Table 2.2 that whatever the method used to measure the soil 

moisture, the common issue is the high cost and effort of setting up the network stations and 

they are only point measurements. Several researchers attempted to gather all available in situ 

soil moisture measurements in one database such as the Global Soil Moisture Data Bank 

developed by (Robock et al., 2000) which was transferred and extended recently to the 

International Soil Moisture Network (ISMN; Dorigo et al., 2011) which is available at 

https://ismn.geo.tuwien.ac.at/. Fig. 2.4 shows the geographical distribution of the available in 

situ networks at ISMN. It can be seen that most of the network stations are located in the 

Northern Hemisphere. Consequently, they are not sufficient to study soil moisture at the 

global scale. 

 

 

 

Fig. 2 - 4 Overview of soil moisture in situ network stations available at ISM. Adapted from 

Ochsner et al. (2013). 

 

https://ismn.geo.tuwien.ac.at/
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2.2.2 Remote sensing of soil moisture 

Remote sensing techniques are being widely used to monitor most kinds of 

environmental issues, from local to original and global scales. Information about the land and 

water surfaces on Earth can be derived using images of the electromagnetic radiations 

acquired from space, reflected or emitted from the Earth’s surface (Campbell, 1996). 

Information over large areas can be obtained rapidly and repetitively thanks to remote sensing 

techniques for making it possible to distribute information through sensors mounted on 

satellites, which operate in several spectral regions (from the optical to microwave regions) 

(Jeyaseelan, 2004). A satellite, launched into special orbit, mostly takes a few days to explore 

the whole surface of the Earth and repeats its path at regular intervals (Jeyaseelan, 2004). 

Most of the electromagnetic spectrum (e.g., optical, infrared and microwave, Fig. 2.5) has 

been used in recent years with different sensors which can provide unique information about 

properties of the surface of the Earth or subsurface soil layers (e.g., albedo, surface 

temperature, soil moisture, etc.). 

Remote sensing is the most appropriate technique to provide global maps of soil 

moisture, and recently, has been providing soil moisture using various techniques (Sandholt et 

al., 2002). In general, soil moisture can be estimated from remote sensing data especially 

from: (i) visible/near-infrared remote sensing, (ii) thermal infrared remote sensing, and (iii) 

microwave remote sensing which includes both passive microwave remote sensing and active 

microwave RS. Table 2.3 summarizes the characteristics and advantages as well as the 

limitations of each category. For more information on the principles of estimating near-

surface soil moisture from remote sensing data, advantages and limitations, the reader is 

directed to (Nichols et al., 2011; Wang & Qu, 2009; Wang & Zhang, 2005).  
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Fig. 2 - 5 Electromagnetic spectrums (including the entire range of radiations, which are 

measured either as waves or frequencies) (From Bartalis et al., 2009). 



28 

 

Table 2 - 3 Comparison of different remote sensing techniques. Adapted from Kong (2006). 

 

Sensor type  Wavelengths  Property 
observed  

Sensors  Advantages  Limitations  

Visible  Red: 610 - 700 nm 

Orange: 590 - 610 nm 

Yellow: 570 - 590 nm 

Green: 500 - 570 nm 

Blue: 450 - 500 nm 

Indigo: 430 - 450 nm 

Violet: 400 - 430 nm 

Soil albedo ;  

Index of 

refraction  

NOAA 

AVHRR  

Landsat TM  

Terra 

MODIS  

Envisat 

MERIS  

AATSR  

SPOT  

High /medium 

resolution.  

Influenced by various factors: 

Cloud effects, soil texture, 

structure, illumination 

geometry, and atmospheric 

conditions.  

Infrared  Near Infrared (NIR): 0.7 to 1.5 µm. 

Short Wavelength Infrared (SWIR): 1.5 

to 3 µm. 

Mid Wavelength Infrared (MWIR): 3 to 

8 µm. 

Long Wavelength Infrared (LWIR): 8 to 

15 µm. 

Far Infrared (FIR): longer than 15 µm. 

Surface 

temperature  

GOES TIR  

NOAA 

AVHRR  

Terra 

MODIS  

Landsat TM  

Envisat 

AATSR  

High /medium 

resolution  

Large swath 

Physics are well 

understood.  

Influenced by Cloud effects, 

vegetation, topography, and 

meteorological conditions. 

Limited frequency of coverage;  

 

Passive 
microwave  

L band: 1 - 2 GHz (15 - 30 cm) 

S band: 2 - 4 GHz (7.5 - 15 cm) 

C band: 4 - 8 GHz (3.8 - 7.5 cm) 

X band: 8 - 12.5 GHz (2.4 - 3.8 cm) 

Ku band: 12.5 - 18 GHz (1.7 - 2.4 cm) 

K band: 18 - 26.5 GHz (1.1 - 1.7 cm) 

Ka band: 26.5 - 40 GHz (0.75 - 1.1 cm) 

Brightness 

temperature;  

Dielectric 

properties;  

Soil 

temperature  

SMMR 

SSM/I 

AMSR-E  

SMOS 

AMSR2 

AQURIES 

WindSat 

SMAP  

Penetrate cloud, 

rain, smoke and 

smog; 

Vegetation 

semi-

transparent; 

Measurements 

are directly 

sensitive to 

Low spatial resolution;  

Influenced by roughness, 

vegetation cover, and soil 

temperature.  
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Sensor type  Wavelengths  Property 
observed  

Sensors  Advantages  Limitations  

changes in 

surface soil 

moisture; high 

temporal 

resolution; Low 

cloud and 

atmospheric 

noise. Detect 

only naturally 

occurring 

energy 

Active microwave  L band: 1 - 2 GHz (15 - 30 cm) 

S band: 2 - 4 GHz (7.5 - 15 cm) 

C band: 4 - 8 GHz (3.8 - 7.5 cm) 

X band: 8 - 12.5 GHz (2.4 - 3.8 cm) 

Ku band: 12.5 - 18 GHz (1.7 - 2.4 cm) 

K band: 18 - 26.5 GHz (1.1 - 1.7 cm) 

Ka band: 26.5 - 40 GHz (0.75 - 1.1 cm) 

Backscatter 

coefficient;  

Dielectric 

properties; 

change 

detection 

ERS1/ERS2 

SAR  

Radarsat  

Envisat 

ASAR  

ASCAT 

penetrate cloud, 

rain, smoke and 

smog; 

Vegetation 

semi-

transparent; 

Independent of 

solar 

illumination;  

High spatial 

resolution;  

Low 

atmospheric 

noise. Act as 

their own energy 

source 

Low temporal resolution  

More roughness and vegetation 

and topography effects than 

passive microwave sensors.  
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2.2.2.1 Optical remote sensing (Visible and near-infrared)  

The visible/near-infrared remote sensing is mainly used to study land cover and 

vegetation at the present. Nevertheless, measurements of surface reflectance of radiation of 

the sun in the visible and near-infrared (from 350 nm to 800 nm) regions (Fig. 2.5) have been 

also used to retrieve surface soil moisture (Gillies et al., 1997; Kaleita et al., 2005; Whiting et 

al., 2004). The basic principle is that it was found that the reflectance at visible and infrared 

wavelengths increased as the moisture content decreased (wet soils are darker in color on the 

image than dry soils and reflectance values are generally low for wet surfaces and high for dry 

surfaces)(Kaleita et al., 2005; Planet, 1970; Weidong et al., 2002). Nevertheless, retrieving 

soil moisture from these data has some limitations and difficulties, as the reflectance of a soil 

is not just a function of soil moisture but is strongly influenced by other soil factors (e.g., 

amount of organic matter, surface roughness, angle of incidence, color of soil elements, 

texture, and mineral composition) (Gascoin et al., 2009a; Gascoin et al., 2009b; Muller & 

Decamps, 2001). In addition optical sensors can only be used to monitor soil moisture over 

bare soil, due to the low penetration depth of the signal through clouds. There are two 

independent problems: (i) clouds and (ii) bare soil only as vegetation reflects light before the 

soil does.  

2.2.2.2 Thermal Infrared remote sensing 

Thermal infrared remote sensing, operating in a wavelength region of approximately 3 

to 14 μm (Fig. 2.5), measures the soil surface temperature which could be used to infer near-

surface soil moisture content (Curran, 1985; Hain et al., 2009; Rahimzadeh-Bajgiran et al., 

2013). Several researchers found that land surface temperature, in the thermal infrared, is 

strongly dependent on the soil moisture as areas having higher soil moisture content are 

cooler during the day and warmer at night (Hain et al., 2009; van de Griend & Engman, 
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1985), because cooler areas are the ones that evaporated more, and evaporation is water 

limited. Earlier studies have shown that the amplitude of the diurnal range of soil surface 

temperature has been found to have a good correlation with the near-surface soil moisture 

(Schmugge et al., 1980). Limitations to this type of measurement are due to effects of cloud 

cover, soil types, and vegetation and meteorological factors (Wetzel & Woodward, 1986). 

2.2.2.3 Microwave remote sensing 

Microwave remote sensing systems use electromagnetic radiation in the frequency 

range of about 0.3 to 30 GHz, with wavelengths of about 1mm to 1m (Fig. 2.5). Satellites 

operating in the microwave domain have unique capabilities, over the higher frequencies, 

such as atmosphere transparency, cloud penetration, day and night capability (independency 

of solar illumination), vegetation semi-transparency, strong dependency on the dielectric 

properties of the soil (which is a function of the soil moisture), and soil penetration (to a 

certain extent) (Schmugge et al., 2002; Ulaby et al., 1981). The microwave remote sensing is 

categorized into active and passive systems (see Fig. 2.6). Active sensors emit 

electromagnetic pulses and measure the radiation back-scattered from the surface, whereas 

passive systems (radiometers) record the natural radiation of the earth's surface. Fig. 2.6 

illustrates the differences between passive and active microwave remote sensing. 

Although active and passive systems have different recording techniques, there is a 

close connection using Kirchhoff's law of thermal radiation, which states that the emissivity 

of a body is equal to its absorptivity under thermodynamic equilibrium (Schanda, 1986).  
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Fig. 2 - 6 Scheme of active and passive microwave remote sensing principles. Source: 

[http://pmm.nasa.gov/node/345]. 

 

Passive microwave sensors do not directly measure the soil moisture but brightness 

temperatures (TB), which allows for retrieving bio-geophysical variables including the soil 

moisture. TB for a non-black body can be computed using the inverse of Planck function: 

𝑇𝐵 =
𝐷2

𝜆 𝑙𝑛 [1 +
𝐷1

𝜆5𝐼𝜆
]

                                                                                                 2 − 4 

where: 

D1 = 1.1911x10
8
 [W m

-2
 sr

-1
 µm

5
], 

D2 = 1.4388x104 [K µm], 

Iλ is the measured intensity (radiance) [W m
-2

 sr
-1

], and 

λ is the s the wavelength [µm]. 

It should be noted that TB, in the infrared domain, is equal to kinetic temperature for a 

black body but for a natural material: 
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 𝑇𝐵4 = 𝑒𝑝𝑇4                                                                                                                2 − 5 

where the emissivity (ep) is a dimensionless value (0 < e <1) and a function of a 

number of factors.  

Planck function in the microwave domain can be further simplified using the Rayleigh 

–Jeans approximation, which gives: 

 𝑇𝐵 = 𝑒𝑝𝑇                                                                                                                    2 − 6 

The emissivity of a soil varies greatly according to its water content, which can be 

described as (Njoku & Li, 1999): 

𝑒𝑝 = 1 − 𝑟𝑠𝑝                                                                                                                 2 − 7 

where rsp is the surface reflectivity, which can be computed for smooth soil using 

Fresnel laws (Njoku & Li, 1999). The Fresnel reflection coefficients rbH and rbV at horizontal 

(H) and vertical (V) polarizations, respectively, can be written as: 

𝑟𝑠𝐻(θ) = |
cos(𝜃) − √𝜇𝑠𝜀𝑏 − 𝑠𝑖𝑛2(𝜃)

cos(𝜃) + √𝜇𝑠𝜀𝑏 − 𝑠𝑖𝑛2(𝜃)
|

2

                                                              2 − 8 

𝑟𝑠𝑉(θ) = |
𝜀𝑏 cos(𝜃) − √𝜇𝑠𝜀𝑏 − 𝑠𝑖𝑛2(𝜃)

𝜀𝑏 cos(𝜃) + √𝜇𝑠𝜀𝑏 − 𝑠𝑖𝑛2(𝜃)
|

2

                                                         2 − 9 

 

where  

εb is the complex soil dielectric constant,  

θ is the incidence angle, and 

b subscript stands for bare soil.  

The basic concept for retrieving surface soil moisture from passive measurements is 

based on the large contrast of the dielectric constant values of the soil, which is ~4 for dry 

soil, ~80 for water, and from ~4 to ~40 for soil-water mixtures in the microwave region 

(Njoku & Entekhabi, 1996; Schmugge et al., 1986). The dielectric constant is an electrical 

property of the material which is a measure of the response of a medium to an applied electric 
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field. It is a complex number, consisting of a real part (determines the propagation 

characteristics of the passed energy into the soil) and an imaginary part (determines the 

energy loose) (Schmugge et al., 1986). In an inhomogeneous medium, such as the soil, the 

complex dielectric constant is a combination of the individual dielectric constants of its 

components (air, water, and stone). Fig. 2.7 illustrates the relationship between the dielectric 

constant of the soil and water content, which is almost linear.  

 

Fig. 2 - 7 Relationship between The real ɛ´ and imaginary ɛ´´ components of the dielectric 

coefficient for different types of soils and soil moisture (Ulaby et al., 1986). 

The dielectric constant can be measured in the ground using Capacitance or Time-

domain reflectometer (TDR) probes. However, these probes are expensive and require 
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specific and careful calibrations (Dobriyal et al., 2012). Alternatively, several dielectric 

models have been developed to calculate the dielectric constant such as: semi-empirical 

model (Dobson et al., 1985; Peplinski et al., 1995), the Wang & Schmugge empirical mixing 

model (Wang & Schmugge, 1980), and more recently the semi-physical model (Mironov et 

al., 2012), which is formally known as the Mineralogy-Based Soil Dielectric Model 

(MBSDM). It should be noted that all these models depend on frequency, soil texture, and 

soil moisture though they differ in analytical forms. Readers are directed to (Mironov et al., 

2009) for more details about the description of these different models.  

Similarly, active sensors do not directly measure the soil moisture but the radar 

scattering cross section (σ), measured in m
2
, from the surface which is mainly influenced by 

the soil moisture. The radar scattering cross section is a function of the angle of incidence, the 

frequency of operation, polarization, electrical properties of soil (e.g., dielectric constant and 

conductivity), and the physical properties (e.g., texture, surface type, etc.). The radar 

scattering cross section is given by the general radar equation (e.g. Ulaby et al., 1981):  

𝜎 =
(4𝜋)3𝑅4𝑃𝑟

𝐺2𝜆2𝑃𝑡
                                                                                                        2 − 10 

 

where: 

Pr is the received power at receiver [W], 

Pt is the transmitted power [W], 

λ is the wavelength [m], 

R is the range or distance of target [m], and 

G is the antenna power gain [-]. 

There are several active (ASCAT, etc.) and passive (SMOS, AMSR-E, etc.) 

microwave sensors, as already mentioned in the Introduction, that have been used to observe 

the Earth emissions and backscatter from various targets for several decades. However, 



36 

 

several factors affect the sensitivity of these microwave sensors to soil moisture, that should 

be accounted for when retrieving soil moisture from microwave observations, including 

(Choudhury et al., 1979; Choudhury, 1993; Ferrazzoli et al., 1992; Njoku & Entekhabi, 1996; 

Njoku & Li, 1999; Schmugge et al., 1986; Schmugge, 1985; Ulaby et al., 1986; Wang et al., 

1983; Wigneron et al., 1993; Wigneron et al., 1998): 

 Microwave sensors have different soil penetration capabilities which depend on the 

frequency used. The performance of microwave sensors operating at low frequencies 

is less affected by the atmospheric effects. The frequencies above 30 GHz, for 

instance, are strongly affected by water clouds, whereas the effects are negligible for 

frequencies below 15 GHz. Also, the effect of intense rain is more pronounced for 

frequencies above 10 GHz (Ulaby et al., 1981). 

 The penetration depth in the surface is strongly related to the frequency/ wavelength. 

Microwave sensors operating at longer wavelengths penetrate deeper in the soil 

surface and/or vegetation canopy. Therefore, the C (λ ~ 3.8 - 7.5 cm) and L-band (λ ~ 

15 - 30 cm) are commonly used for sensing soil moisture but L-band is more preferred 

as the sampling depth is larger, ~ 3 cm (Escorihuela et al., 2010).  

 The signal of microwave sensors is also influenced by the incidence angle; it becomes 

less sensitive to soil moisture when the incidence angle increases. At lower incidence 

angles, the attenuation of vegetation and the effect of surface roughness are 

minimized. Therefore, lower incidence angles are optimal for sensing soil moisture 

(Ulaby et al., 1986). 

 Active and passive microwave sensors measure the backscatter and surface’s 

emission, respectively, using different polarizations. Active sensors can measure 

backscatter in HH, VV, HV, and VH polarizations, whereas passive sensors measure 
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the emission in V or H polarizations. The vertical polarization signal is less sensitive 

to the soil moisture than horizontal polarization (Njoku & Li, 1999).  

 The surface roughness, which is a measure of the irregularities of the surface 

geometry, has a significant effect on the variation of backscatter and TB, as it 

increases the surface area. Passive microwave sensors are, in most cases, less sensitive 

to surface roughness than active microwave sensors (Schmugge, 1985). However, a 

recent study found that the sensitivity of the passive observations to surface roughness 

was relatively similar for all the frequencies i.e. 1.4, 10.65, 23.8, 36.5, and 90 GHz 

(Montpetit et al., 2014). 

 Vegetation cover attenuates the soil emission and its influence increases as the 

frequency increases (Ferrazzoli et al., 1992; Wigneron et al., 1993). 

 Other factors such as the soil temperature (Raju et al., 1995), topography (Mialon et 

al., 2008), soil texture (Mironov et al., 2012), have a small influence on the microwave 

observations but should be taken into consideration (Njoku & Entekhabi, 1996).  

 

It can be summarized that the negative effects of these factors, generally, increase with 

increasing frequency (Njoku & Entekhabi, 1996) within the microwave domain. Besides, 

atmosphere and ground penetration is deeper at lower frequencies. This makes the 

observations at low-frequency bands (1-3 GHz i.e. ~30-10 cm wavelength) more optimal for 

sensing soil moisture (Kerr et al., 2001; Njoku & Entekhabi, 1996; Schmugge et al., 1986).  

Table 2.4 shows passive sensor frequency allocations. Some of the passive sensors, 

such as the AMSR-E, operate in unprotected frequency bands i.e., 6.925 GHz (C-band), 10.65 

GHz (X-band), and 18.7 GHz (K-band) which are used also in satellite communications, 

whereas other passive sensors, such as the SMOS and SMAP, operate in protected bands i.e. 

1.4 GHz (L-band).  
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Table 2 - 4 Passive sensor frequency allocations (GHz). Adapted from Ulaby et al. (1981). 
 

Protected for radio 
astronomy - no transmitters 
allowed 

Shared primary use for 
services having 
transmitters 

Shared secondary 
use for services 
having transmitters 
 

0.404-0.406 1.6605-1.6684 1.370-1.400 

1.400-1.427 2.690-2.700 

 

2.640-2.600 

10.68-10.70 10.60-10.68 

 

4.2-4.4 

 

15.35-15.40 
 

21.2-21.4 

 

4.80-4.99 

 

23.6-24.0 
 

31.5-31.8 

 

6.425-7.250 

31.3-31.5 
 

36- 37 15.20-15.35 

89.92 50.2-50.4 18.6-18.8 

- - 22.21-22.5 

 
 
 

2.2.3 Soil moisture modelling 

In order to overcome the limitations of ground based measurement, several dynamic 

models can be used to predict and model the spatio-temporal variations of soil moisture over 

large areas. Models have the advantage, in comparison to in situ, that they can provide soil 

moisture in different spatial and temporal resolutions from local to global and from hours to 

days, respectively. Notwithstanding, models require knowledge of other estimated or 

measured parameters and have a disadvantage of requiring several dynamic and statics inputs 

(e.g., a digital terrain model, soil type, soil texture, land cover, climate forcings, etc.), due to 

the complexity of the hydrologic cycle and the heterogeneity of the land surface. 

Consequently, models vary in the level of complexity of details they use in representing the 

physical system, temporal and spatial scales, variation of the driving forces, and the number 

of soil layers used (Schmugge et al., 1980).  
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All above dynamic models predict soil moisture among other components of the water 

cycle such as runoff, rainfall, and evapotranspiration. This is true for hydrological models 

(e.g. TOPMODEL, a TOPography based hydrological MODEL (Beven & Kirkby, 1979)), 

and land surface models (LSMs), whether used alone or within weather or climate models. 

Among the various state-of-the-art LSMs, one finds: the Interactions Soil-Biosphere-

Atmosphere (ISBA; (Noilhan & Planton, 1989)), ORCHIDEE (Organizing Carbon and 

Hydrology In Dynamic Ecosystems) (de Rosnay & Polcher, 1998; Krinner et al., 2005), 

MERRA-Land (NASA's Modern-Era Retrospective Analysis for Research and Applications) 

(Reichle et al., 2011), HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchange 

over Land (Balsamo et al., 2009), etc. Note that the Global Soil Wetness Project (GSWP-2) 

(Dirmeyer et al., 2002) is aiming at producing a global soil moisture datasets from a multi-

land surface models ensemble to serve as a benchmark production. Readers are directed to 

(Pitman, 2003; Singh & Woolhiser, 2002) for a detailed review of land surface and distributed 

hydrological models, as this topic is beyond the scope of this doctoral dissertation. 

As stated before, soil moisture plays a major role in the water cycle by influencing the 

soil-vegetation-atmosphere interactions through influencing water and energy exchanges. It 

can be said that the two fundamental equations for soil moisture modelling are represented by 

the water and energy balance equations as follows: 

The water balance is commonly expressed as follows (Dingman, 2002; Schmugge et 

al., 2002): 

∆𝑆

∆𝑡
= 𝑃 − 𝐸𝑇 − 𝑄                                                                                                   2 − 11 

where the variables are expressed as volume of water per unit system area per unit 

time: 

S  is soil water or soil moisture [L], 

t  is time [T] (e.g. h, day), 
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∆t is the time step, 

P     is the precipitation [L/T], 

ΔS/Δt is the change in storage in the soil [L/T], 

ET  is the evapotranspiration [L/T], and 

Q    is the runoff [L
3
/T].   

The energy balance is commonly expressed as follows (Schmugge et al., 2002): 

𝑅𝑛 − 𝐺 = 𝐻 + 𝐿𝐸                                                                                                   2 − 12 

Where: 

 Rn is the net radiation [W/m
2

],  

G is the soil heat flux [W/m
2

],  

H is the sensible heat flux [W/m
2

], and  

LE is the latent heat flux [W/m
2

]. 

The quantity R
n
-G is the available energy for the turbulent fluxes (LE and H).  

In hydrological models,  ET is often expressed as a depth of water over daily 

(mm/day) or longer time scales (Schmugge et al., 2002). It is often deduced from the so-called 

“reference evapotranspiration”, ET0, which corresponds to ET from a well-watered 

“reference” grass (uniform short grass of 0.12 m, with a fixed surface resistance of 70 s m
-1

 

and an albedo of 0.23), that would not suffer from any water stress, thus evaporate at its 

potential rate. In this framework, actual ET (AET), i.e. the amount of ET that actually occurs 

when the water is limited (Ward & Trimble, 2004), can be deduced from a water stress factor 

multiplied to potential ET (PET), which can itself be deduced from ET0 by means of a crop 

coefficient, accounting for the differences in PET between the reference grass and the selected 

vegetation/crop. The Penman-Monteith equation (Monteith, 1965), as proposed by the FAO 
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(United Nations Food and Agricultural Organization), has been widely used to calculate ET0 , 

using readily available meteorological data (Allen, 1998):  

𝐸𝑇0 =
0.408Δ(𝑅𝑛 − 𝐺) + [𝛾𝑢 (𝑒𝑎 − 𝑒𝑑)

900
𝑇 + 273

]

Δ + 𝛾(1 + 0.43𝑢)
                                      2 − 13 

Where 𝐸𝑇0 is evaporation (kg/m
2
/d), G is soil heat flux (MJ/m

2
/d), 𝑅𝑛

 
is the net 

radiation flux density at the surface (MJ/m
2
/d), 𝑐𝑝is the specific heat of moist air, 𝑒𝑎is the 

saturation vapour pressure of the air (kPa), 𝑒𝑑
 
is the mean actual vapour pressure of the air 

(kPa), (𝑒𝑎 − 𝑒𝑑) is the vapour pressure deficit of the air, u is wind speed at 2 m height 

(m/s), Δ is the slope of the saturation vapor pressure curve, γ is the psychometric constant 

(kPa°C
-1

), and ρ is the atmospheric density (kg/m
3
). Basically, the Penman-Monteith approach 

is a way to implicitly use the energy budget without explicitly solving it. It is used in most 

hydrological models, including TOPMODEL (Beven & Kirkby, 1979). 

In contrast, LSMs use the energy budget equation and diffusive equations to calculate 

E and H (Barella-Ortiz et al., 2013). LSMs use turbulent diffusive equations because of high 

time step required to solve it jointly with the surface energy budget, which needs to be small 

enough (typically half-hourly) to account for the pronounced diurnal cycle of the involved 

energy fluxes. A diffusive equation was introduced by Budyko (1956) to estimate PET: 

𝑃𝐸𝑇 =
ρ

𝑟𝑎

[𝑞𝑠𝑇𝑤 − 𝑞𝑎]                                                                                            2 − 14 

where: 

ρ  is the air density, 

ra  is the aerodynamic resistance, 

qs is the saturated specific humidity, 

Tw is the virtual temperature, and 

qa  is the specific humidity of the air. 
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2.2.3.1 MERRA-Land 

MERRA-Land is an enhanced product to the hydrological fields in the NASA 

MERRA atmospheric reanalysis (Reichle et al., 2011). MERRA uses Version 5.2.0 of the 

Goddard Earth Observing System model (GEOS-5) and its associated data assimilation 

system, covering the period 1979-present period (Rienecker et al., 2011). The reader is 

directed to Rienecker et al. (2011) for more details on MERRA reanalysis and products, 

which can be obtained from the M-DISC (http://disc.sci.gsfc.nasa.gov/mdisc/) (Reichle, 

2012).  

MERRA-Land, which is a land-only (“off-line”), introduced some enhancements to 

MERRA including (Reichle et al., 2011): (ii) enhancing the MERRA-Land precipitation 

forcing by merging MERRA precipitation with a gauge-based data product from the NOAA 

Climate Prediction Center and (ii) updating the catchment land surface model by using the 

“Fortuna-2.5” version instead of the “MERRA” version. These two changes were evaluated 

by Reichle et al. (2011) and was found that these changes improved the quality model in 

various ways.  

Other characteristics of MERRA-Land data include (Reichle, 2012): (i) this product 

can be freely obtained from the Goddard Earth Sciences (GES) Data and Information Services 

Center (DISC) (ii) this product is provided as hourly averages (iii) this product is described as 

a simulation product and there is no assimilation of model state variables (such as soil 

moisture or snow) (iv)  Leaf area index and greenness in this product are prescribed as a 

monthly climatology based on AVHRR (Advanced Very High Resolution Radiometer) 

observations, and (v) this product is provided with a horizontal resolution of 1/2° latitude by 

2/3° longitude.  This is the same as in the standard MERRA product (Reichle, 2012). 

Fig. 2.8 displays the surface below each atmospheric column in GEOS-5 which 

consists of a set of tiles: Ocean, Land, (land) Ice, or Lake. A catchment model is used to 

http://disc.sci.gsfc.nasa.gov/mdisc/
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simulate these sub-tile fractions, which vary with time (Reichle, 2012). For further details on 

the catchment model, the readers are directed to (Ducharne et al., 2000; Koster et al., 2000).  

 

 

Fig. 2 - 8  Land surface representation in GEOS-5. Adapted from (Reichle, 2012)  

 
The land surface water balance equation is described, in GEOS-5, as follows (Reichle, 

2012) 

𝜕𝑊

𝜕𝑡
= 𝑃𝑙 + 𝑃𝑠 − 𝐸𝑙 − 𝑅𝑙 + 𝑅𝑤                                                                              2 − 15 

where: 

W  is the total water held in all land surface reservoirs (comprising the soil, the 

interception reservoir, and the snowpack), 

Pl            the liquid rain, 

Ps   “snowfall” rates, 

El  is the total evapotranspiration rate, 

Rl  is the total runoff–surface (or overland) plus baseflow, and 

Rw is a spurious water source 
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The balance equation for total land surface energy is described, in GEOS-5, as follows 

(Reichle, 2012): 

 
𝜕ɛ

𝜕𝑡
= 𝑆𝑊𝑙 + 𝐿𝑊𝑙 − 𝑆𝐻𝑙 − 𝐿𝑣𝐸𝑙 − 𝐿𝑓∆𝑆𝑊𝐸 + 𝑅𝑙                                            2 − 16 

 
where: 
 
ɛ is the total heat content (in the soil, canopy, and snowpack) relative to liquid water 

SW
l  is the net shortwave radiation, 

LW
l  is the net long wave radiation, 

Lv   is the latent heat of vaporization (from liquid),  

El  is the total evaporation from the land surface,  

SHl   is the sensible heat flux from the land surface,  

Lf    is the latent heat of fusion, 

Rl is the spurious snow energy source, and  

ΔSWE is the change in the snow water equivalent. 

2.2.4 Soil moisture data assimilation 

Forecasts (predictions) are made using numerical models, and different models are 

used depending on the target forecasted variables. Forecast of state variables can be improved 

by optimally integrating model predictions with observations through data assimilation 

techniques. Soil moisture data assimilation has been applied in hydrology since the eighties 

and with a recent rapid progress thanks to remote sensing (Ni-Meister, 2008). The recent 

availability of surface soil moisture from remote sensing enables, for instance, hydrologists to 

obtain more accurate values of the root zone soil moisture through data assimilation of 

remotely sensed near-surface soil moisture into land surface models (Draper et al., 2009b; 

Draper et al., 2012; Hoeben & Troch, 2000; Reichle et al., 2007; Scipal et al., 2008).  
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There are several data assimilation techniques in soil moisture fields: (i) the Kalman 

Filter (Crosson et al., 2002; Walker et al., 2001), (ii) direct insertion method (Heathman et al., 

2003; Walker et al., 2001), (iii) extended Kalman Filter (Reichle et al., 2002a), and (iv) 

Ensemble Kalman Filter (Reichle et al., 2002b). The Ensemble Kalman Filter (EnKF) is the 

most widely used due to its strength in handling non-linear systems and computational 

efficiency (Crow & Wood, 2003). More recently, satellite-based active microwave near-

surface soil moisture observations (0-2 cm) from the ASCAT have been integrated with land 

surface models (ECMWF) through land data assimilation system and produced SM-DAS-2 

soil moisture product (de Rosnay et al., 2013). This recent later product was used in this 

doctoral dissertation as a benchmark and it is briefly described in Chapter IV.  

 

2.2.4.1 SM-DAS-2 

 

SM‐DAS‐2 is a near real time (NRT) root zone soil moisture index generated by 

assimilating the ASCAT surface soil moisture index in the improved, Hydrologically, 

ECMWF HTESSEL (Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et 

al., 2009) land surface model (PUM, 2012). SM-DAS-2 soil moisture product is assimilation 

product produced based on a simplified Extended Kalman Filter (EKF) to propagate the 

ASCAT surface soil moisture index observation towards the root region down to 2.89 m 

below surface (PUM, 2012). Fig. 2-9 shows SM-DAS-2 production chain based on the 

ECMWF HTESSEL land surface model.  



46 

 

 

                Fig. 2 - 9 SM-DAS-2 production chain. Adapted from (PUM, 2012). 

 

The scheme of the last version of HTESSEL is displayed in Fig 2-10. The HTESSEL 

has six tiles over land (low and high vegetation, bare ground, shaded and exposed snow, and 

intercepted water), two over water (open and frozen water), and four layers (from top to 

down: 0.07, 0.21, 0.72 and 1.89 m) for each grid cell with separate energy and water balances 

(PUM, 2012). HTESSEL recently accounts for vegetation seasonal cycle described by Leaf 

Area Index (LAI) monthly climatology data sets, and recently considered improved bare soil 

evaporation parameterization (Balsamo et al., 2011). The vegetation information and LAI 

climatology is based on the Global Land Cover Characteristics (GLCC) and MODIS datasets, 

respectively (de Rosnay et al., 2013). Richards’s equation and Darcy's law are used to 

compute the vertical movement of water in the unsaturated zone.  The dominant soil texture 

class for each grid point is adopted by HTESSEL and taken from the FAO (FAO, 2003) 

available at a resolution of 5'x5' (about 10 km) (de Rosnay et al., 2013). 
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Fig. 2 - 10 The scheme of HTESSEL and the recent revisions in the land surface model. Adapted 

from (Balsamo et al., 2011) 
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For each tile the energy balance, in HTESSEL, is calculated separately as follows 

(Wipfler et al., 2011): 

(1 − 𝛼𝑖)𝑅𝑠 ↓ +↓ 𝑅𝑙 − 𝑅𝑙 ↑ −𝐺𝑖 = 𝐻𝑖 + 𝜆𝐸𝑖                                                      2 − 17 

where:  

Rs is the flux density of short wave (W/m
2
)    

Rl is the flux density long wave radiation (W/m
2
), the arrows refer to incoming (↓) and 

outgoing (↑) flux densities,  

𝛼i is albedo,  

Hi is the sensible flux density of tile I (W/m
2
)    

λEi is the latent flux density of tile I (W/m
2
)    

Gi  is the soil heat flux density of tile I (W/m
2
)   ,  

𝜆 is the specific latent heat of vaporization (J/kg), and  

E is the mass flux density of evaporation (kg /m
2
/s). 

  

The water balance (mm/d) at the land surface, in HTESSEL, is calculated as follows 

(Wipfler et al., 2011): 

∆𝑊 + ∆𝑆 = 𝑃 − 𝐸 − 𝑅                                                                                          2 − 18 

where:  

∆𝑊  is the change in water storage of the soil moisture and interception reservoir, 

∆𝑆  is the change in accumulated snowpack,  

P  is the precipitation,  

E  is the evaporation of soil, vegetation and intercepted water,  

R is the surface and subsurface runoff. 
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Fig. 2 - 11 Water balance representation in HTESSEL. Adapted from (Wipfler et al., 2011). 

 
SM‐DAS‐2 soil moisture datasets were validated against soil moisture measurements 

from in situ data from more than 200 stations across four continents (PUM, 2012). Albergel et 

al. (2012) gathered ground-based soil moisture measurements from 295 stations (France, 

Spain, Germany, Italy, Denmark, Luxembourg, Finland, Poland, Australia, the United States, 

and Western Africa), for the year 2010. Albergel et al. (2012) compared SM-DAS-2 product 

with these in situ datasets along with SMOS and ASCAT soil moisture products and found 

that SM-DAS-2 was closer to the in situ datasets, in terms of correlation, than the other 

datasets. 

Other characteristics of SM-DAS-2 include: (i) this product is available at a 24‐hour 

time step (ii) this product has a horizontal resolution of ~ 25 km (a Gaussian reduced grid at 
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T799), (iii) this product is available online on  ftp://ftp.meteoam.it, (iv)  this product is 

provided either as digital data (GRIB1 format) or  images (PNG format) (PUM, 2012). 
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Chapter III 
 

3.    SMOS/ASCAT/AMSR-E 
Mission overview 

 

This chapter gives an overview on the current state of the art in the SMOS, as well as 

shortly ASCAT and AMSR-E, mission. It also describes shortly the basics of surface soil 

moisture (SSM) retrievals from these sensors and the types of existing SSM products. The 

main characteristics of SMOS, ASCAT, and AMSR-E missions and their SSM products are 

listed in Table 3.3 at the end of this chapter. 

 

 

 

 

 

 

 

 

 

 



52 

 

3.1 SMOS 

3.1.1 SMOS mission overview  

The SMOS mission (see SMOS satellite in orbit in Fig. 3.1), known as the European 

Space Agency (ESA’s) water mission, was proposed by the CESBIO (Centre d'Etudes 

Spatiales de la BIOsphère) – CNES (Centre national d'études spatiales) in 1993 and then to 

ESA in 1999 as a response to the needs of weather and climate modelling, where surface soil 

moisture (SSM) is involved in the water cycle. The ESA collaborated with the CNES and 

CDTI (the Centre for the Development of Industrial Technology) in Spain  to conduct the 

SMOS satellite as part of its Living Planet program as the second of seven Earth Explorer 

missions (Kerr et al., 2001; Kerr et al., 2010). The SMOS satellite was launched in November 

2009 by a Rocket launcher in Northern Russia at 01:50 UTC. It is the first ever passive 

satellite specifically dedicated to monitor two geophysical variables (ocean salinity and soil 

moisture) at the global scale (Kerr et al., 2001; Kerr et al., 2010). The SMOS satellite has a 

revisit frequency of ~ three days and has two overpass times, from South Pole to North Pole 

(the so-called ascending) at 06:00 local time and from North Pole to South Pole (the so-called 

descending) at 18:00, displayed in Fig. 3.1. The SMOS satellite measures the Earth’s 

emissions (brightness temperatures) that originate from the top 5 cm of soil at L-band (1.4 

GHz). L-band provides the best sensitivity to variations in surface soil moisture (SSM) and 

ocean salinity contents as it is not much sensitive to perturbing factors from weather, 

atmosphere, and vegetation (Kerr et al., 2001; Njoku & Entekhabi, 1996; Pellarin et al., 

2003). 
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Fig. 3 - 1 SMOS satellite with ascending (ASC) and descending (DESC) orbits. Source: 

[www.esa.int]. 

 

The SMOS mission has two primary objectives (Kerr et al., 2001; Kerr et al., 2010): 

(i) To accurately provide space-borne brightness temperatures (TB) observations 

from which global maps of SSM and Sea Surface Salinity (SSS) can be 

retrieved, which in turn enhance the understanding of climate change, improve 

weather forecasts, and make better hydrological models predictions, and 

(ii) To contribute to cryosphere studies by providing observations over snow and 

ice regions and improving snow mantle monitoring and multilayer ice 

structure.  

A unique aspect of this mission is that the SMOS satellite carries a novel and 

innovative payload adopting a completely different approach in the field of remote sensing. 
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This technique is based on a new passive instrument which is capable of recording TB at 

1.40-1.427 GHz frequencies (L-band) in two polarizations (H & V) and multi-angular angles 

(McMullan et al., 2008). This new instrument is called the Microwave Imaging Radiometer 

by Aperture Synthesis (MIRAS), which is a two-dimensional passive microwave 

interferometry radiometer (McMullan et al., 2008), see Fig. 3.2. To achieve an adequate 

spatial resolution for passive imaging from space by SMOS at L band (= 21 cm), large 

rotating antenna (several meters) is required. However, it will be too big to be carried by a 

satellite and costly, therefore it is a major challenge. To overcome this problem, antenna 

apertures for which thinned arrays using synthetic aperture principles were adopted for SMOS 

mission (Kerr et al., 2001).  

The main characteristics and features of MIRAS, which has a Y-shaped deployable 

structure, are listed below (McMullan et al., 2008): 

I. A central hub to which 3 straight arms are connected and are equally separated, 120° 

apart each other with an arm length of 4.5 m and are spaced d = 0.875 wavelengths 

(Fig. 3.2). The Nyquist criterion is not satisfied here as for hexagonal sampling 

necessitates that the antenna separation should be d =1/√3 wavelengths to avoid 

aliasing in the unit circle (Camps et al., 1997). Consequently the reconstructed 2-D TB 

images (i.e. the microwave radiation emitted from the Earth's surface) suffer from 

aliasing (see Fig. 3.3) (Camps et al., 2005).  

II. Each arm comprises three segments with six L-band radiometers on each segment 

III. 54 radiometers on the arms and 12 in the hub (a total of 66 radiometers). 

IV. 3 noise injection radiometers (NIRs) placed in the central hub. 

V. 69 small receivers and uniformly distributed antennas, the antennas are separated by a 

distance of 18.37 cm, with a diameter of each antenna of 165 mm, with a height of 19 

mm and a weight of 190 grams. 
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Fig. 3 - 2 MIRAS instrument configuration diagram (upper panel) and during its assembly 

and integration (bottom panel) (McMullan et al., 2008). 

 

The MIRAS instrument, on-board the SMOS satellite, has been measuring the TB at 

L-band since 2010 within a wide field of view (FOV; see Fig. 3.3 (a)) and range of incidence 

angles spanning from 0° to 65°. Fig. 3.3 (a-c) shows the observation geometry of SMOS (a), 

which is a hexagon-like shape about 1000 km across called the “alias-free zone” 

(www.esa.int; Camps et al., 2005), an example (b) over the Baltic Sea area in Northern 
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Europe, and each pixel in the Alias-free-FOV (c) as it is seen at a different radiometric 

sensitivity, spatial resolution, and incidence angle (Camps et al., 2005). The spatial resolution 

of the TB measurements depends on the incidence angle (Kerr et al., 2010), which is 

maximum (~ 50 km; at incidence angles of 65) at the edge of the FOV and minimum (~ 35 

km; at nadir) at the center of the FOV (Maaß et al., 2013).  

 

 

Fig. 3 - 3 SMOS observation geometry (a), an example of the hexagon-like shaped 'alias free' 

SMOS snapshot over the Baltic Sea area in Northern Europe (b), and incidence angle 

(dashed lines from 10 to 60, circles cantered at (0, 0)); spatial resolution (dash-dot lines from 

40 to 80 km); and radiometric sensitivity (dotted lines from 4 to 6 K) (c). (www.esa.int; 

Camps et al., 2005). 
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3.1.2 SMOS products overview  

SMOS SSM datasets are produced and distributed in different levels (Level 0 to Level 4) 

according to different levels of processors (www.esa.int). Level 0 (L0) to Level 2 (L2) are 

produced and distributed by the ESA, whereas Level 3 (L3) and Level 4 (L4) are produced 

and distributed by national centers in France and Spain (Jacquette et al., 2010). SMOS 

products are classified as follows (www.esa.int;Jacquette et al., 2010): 

1- L0 processor and L0 products: the L0 products are obtained by formatting the SMOS 

Payload raw data (i.e. sorted in their original format as received from the satellite) in 

source packets with added Earth Explorer product headers. 

2- Level 1: the TB are constructed in this level which is subdivided into three levels: 

(i) Level 1A (L1A) processor and L1A products: the L1A processor converts 

and calibrates all data coming from the spacecraft into engineering units. 

L1A products are, scientifically, called “Calibrated visibilities”. 

(ii) Level 1B (L1B) processor and L1B products: the L1B processor converts 

the L1A products into Fourier components of the TB using the so-called 

image reconstruction process. The L1B products are arranged as snapshots 

and not geographically sorted. 

(iii)  Level 1C (L1C) processor and L1C products: the L1C processor 

reprocesses L1B products and provides swath-based maps of TB in the 

antenna polarization reference frame, which are geographically sorted as 

the so-called swath-based multi-angular TB maps. The L1C data are 

geolocated in the Icosahedral Snyder Equal Area projection (ISEA). 

(iv) Level 1 (L1) near real time (NRT) processor and L1 NRT products: L1 

NRT processor converts the extracted L0 data into TB swaths. These 
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datasets are delivered to the users within three hours from sensing time 

and are used as inputs for weather models such as the ECMWF. 

3- Level 2 (L2) processor and L2 products: the L2 processor applies the L-MEB (L-Band 

Emission of the Biosphere) model, which is shortly described in the next Section, to 

derive the global SSM swath-based maps. Quality indicators such as theoretical 

uncertainties of adjusted parameters and flags are also computed by L2 processors. The 

version number of SMOS L2 (SMOSL2) SSM operational processor (e.g., v4.2, v5.00, 

v5.51, v6.0, etc.) deployed in the SMOS processing has changed several times. The 

latest and current stable version available version is V6.0 which implemented 

substantial corrections and improvements (e.g., improved RFI detection, the change of 

the dielectric constant model from the Dobson model (from v5.51 onward) to the 

Mironov formulation, etc.). More details on the SMOSL2 processor and products can 

be found in (Kerr et al., 2012), ARRAY (www.array.ca/smos), ESA 

(http://earth.esa.int/smos), or through the CESBIO blog (www.cesbio.ups-

tlse.fr/SMOS_blog/). 

4- Level 3 (L3) processor and L3 products: the SMOS L3 (SMOSL3) products are global 

gridded maps of SSM produced with improved characteristics through temporal and 

spatial resampling and processing. They are provided by the CATDS (Centre Aval de 

Traitement des Données SMOS) center, which is a ground segment developed by the 

CNES since June 2011. The SMOSL3 SSM products are provided at different temporal 

resolutions: daily products, 3 day (a complete coverage of the Earth surface), 10-day 

composite products, and monthly averaged products (Jacquette et al., 2010). The 

CATDS center provides the SMOSL3 SSM products in the NetCDF format on the 

EASE (Equal Area Scalable Earth) grid with a ~25 km cylindrical projection (Jacquette 

et al., 2010). The SMOSL3 SSM products can be easily downloaded from the CATDS 

http://earth.esa.int/smos
http://www.cesbio.ups-tlse.fr/SMOS_blog/
http://www.cesbio.ups-tlse.fr/SMOS_blog/
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website (http://catds.fr). This product was used throughout this Ph.D. research work. 

The SMOSL3 has, similar to the SMOSL2, several changes in the products for each 

update of the version and this depends on the period: SMOSL3 version v2.45 and 

v2.4X is from Jan. 2010 to Oct. 2012, SMOSL3 version v2.5X is from Nov 2012 to 

June 2013, SMOSL3 version v2.6 is from July 2013 to Dec. 2013, and SMOSL3 

version 2.7X is from Jan. 2014 (corresponding to SMOSL2 V6) onwards. All SMOSL3 

SSM products produced at CATDS from 2010 to 2013 are tagged RE01. However, a 

complete reprocessing is being done at the CATDS to produce a homogeneous time 

series (2010 – present) and this will be released very soon with the latest version 2.72 

of the L3 processor and this reprocessed product will be tagged RE02. 

5- Level 4 (L4) products: the L4 product is a combination of SMOS data with external 

datasets (from sensors or models) under development at the CATDS. The L4 products, 

include, for instance, root zone moisture (1 meter deep), enhanced resolution products 

through a combination of optical, thermal and microwave remote sensing products, 

thickness of the ice, and extreme event products and prevention of natural risks (e.g., 

global drought index, fire, and flood prediction). 

3.1.3 SMOS SSM algorithm 

The basic theory of passive microwave remote sensing has been described in detail by 

a number of researchers (e.g., Ulaby et al., 1986). The general principal of the SMOS 

algorithm relies on the measurements of the TB, corresponding to various contributions, from 

the surface of the Earth (Kerr et al., 2001). The TB observations are largely determined by the 

physical temperature and the emissivity of the radiating object. Wigneron et al. (1993; 1998; 

2000) have demonstrated the possibility to perform 2-parameter retrievals (soil moisture and 

optical depth) from multi-angular TB observations. A theoretical representation of the TB is 
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given by a radiation equation of the black body. The concept of a perfect emitter is only 

theoretical. At microwave wavelengths the Rayleigh -Jeans is valid, and the emissivity (e) can 

be expressed as the ratio between the TB (K) and the physical temperature (Njoku & 

Entekhabi, 1996), as shown in Eq. (2.6) in Section 2.2.2 in Chapter II.  

3.1.3.1 Input datasets  

The SMOSL2 and SMOSL3 retrieval algorithms use, as inputs, the following datasets 

(Kerr et al., 2012): 

(i) The SMOS L1C TB observations. 

(ii) Static datasets i.e. do not vary over time such as: the soil texture, the land cover 

(ECOCLIMAP), soil bulk density (the Global Gridded Surfaces of Selected Soil 

Characteristics), sand and clay fraction (the FAO datasets), the topography index, etc. 

(iii) Dynamic datasets i.e. vary over time such as: the Leaf Area Index (LAI; the 

MODerate Resolution Imaging Spectroradiometer (MODIS)), initial soil moisture 

(ECMWF), snow, soil and surface temperatures, etc. 

3.1.3.2 The SMOSL2 algorithm 

A flow chart showing the entire algorithm of SMOSL2 is displayed in Fig. 3.4 (Kerr et 

al., 2012). The SMOSL2 algorithm, in general, is based on a forward model and iterative 

inversion process. The forward model simulates the TB emitted by land nodes of SMOS using 

initial estimates of soil moisture obtained from the ECMWF forecasts, auxiliary datasets, 

surface temperature, etc. The inversion process estimates the actual soil moisture by 

minimizing the Root Mean Square Difference (“Cost Function”) between the forward model 

simulations and the measured multi-angular TB (L1C data) (Kerr et al., 2012). 

The L1c products are delivered on the icosahedral Snyder equal area Earth fixed 

(ISEA-4H9) grid known as the discrete global grid (DGG). Each DGG node is subdivided 
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into discrete fine flexible grids (DFFG) of approximately 4 km
2 

each (Kerr et al., 2013a). The 

collective contributions from these DFFG cells form the upwelling TB signal measured by the 

SMOS satellite (Kerr et al., 2013a). This upwelling TB is inversed using the L-Band 

Microwave Emission of the Biosphere (L-MEB; Wigneron et al., 2007) model. The L- MEB 

model, with the help of auxiliary datasets (e.g., soil texture, land cover), is able to simulate 

TB for all incidence angles. The L-MEB model is the output of a broad review of knowledge 

of the microwave emission of a variety of land cover types (Wigneron et al., 2007). The L-

MEB model is continuously improved based on several ground and air-borne L-band 

radiometer experimental campaigns over different regions (e.g., de Rosnay et al., 2006; Grant 

et al., 2007; Saleh et al., 2009).  
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Fig. 3 - 4 Schematic diagram of the SMOSL2 SSM algorithm. Adapted from Kerr et al. (2012). 

The L-MEB algorithm is based on an iterative optimization method, which aims at 

minimizing a cost function consisting on the sum of the squared weighted differences 

between TB simulated by L-MEB and measured by SMOS. This is achieved by guessing and 

adjusting the states of geophysical variables (including SSM and vegetation optical thickness) 

until the distance between the TB observed by SMOS and simulated by L-MEB is minimized 

(Kerr et al., 2013a; Kerr et al., 2012).  
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The SMOS TB signal observed at the antenna, shown in Fig. 3.5, can be formulated in 

the general radiative transfer equation as follows (Kerr et al., 2012): 

 

𝑇𝐵𝑝 =  𝑇𝐵𝑎𝑡𝑚𝑢 + 𝑇𝐵𝑠𝑝 exp(−𝜏𝑎𝑡𝑚𝑢) + 

(𝑇𝐵𝑎𝑡𝑚𝑑 + 𝑇𝐵𝑠𝑘 exp(−𝜏𝑎𝑡𝑚𝑑)) 𝑟𝑠𝑝𝑒𝑥𝑝(−𝜏𝑎𝑡𝑚𝑢)                                             3 − 1 

 

where: 

TBatmu  is the up-welling atmospheric emission,  

TBatmd  is the down-welling atmospheric emission reflected (scattered) at the surface,  

TBsp  is the Earth’s surface emission, attenuated by the atmosphere,  

TBsk  is the cosmic background emission attenuated by the atmosphere, reflected 

/scattered at the surface, 

rsp  is  the surface reflectivity, 

τatd  is  the downward path atmospheric opacity,  

τatu  is the upward path atmospheric opacity, which depends on the gaseous and 

liquid droplet attenuating constituents (primarily oxygen, water vapor, and clouds), 

p subscript indicates the polarization, and 

s subscript stands for a combination of surface and near surface layers. 
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Fig. 3 - 5 Components of the general radiative transfer equation (Kerr et al., 2012). 

 

 

The SMOS satellite operates at L-band, so τatu and τatd can be considered equal. Also, 

the atmospheric radiation components (TBatmd and TBatmu) are small and can be considered 

equal. The spatial resolution of the SMOS is about 45 km in average, so a pixel represents 

various surface types such as rural areas, snow, forests, bare fields, fallow land, woodland, 

ponds, etc. Therefore, the total TB is the sum of various classes of emitters, which are 

aggregated by the L-MEB model to obtain a composite TB (Kerr et al., 2013a; Kerr et al., 

2012). The most important classes are shortly presented in the following (Kerr et al., 2013a; 

Kerr et al., 2012): 
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1- Bare soil:  

The SMOS satellite operates at low frequency (L-band) so Rayleigh–Jeans 

approximation can be used. Therefore, the upwelling TB measured from the surface of bare 

soils is simply the product of the soil effective temperature, Tg and the soil emissivity of the 

radiating body ep: 

𝑇𝐵𝑝 = 𝑇𝑔 𝑒𝑝                                                                                                                3 − 2  

 P subscript stands for either vertical or horizontal polarization, ep can be further described as: 

𝑒𝑝 = 1 − 𝑟𝑠𝑝                                                                                                                3 − 3 

where rsp is the surface reflectivity, which can be computed for smooth soil using 

Fresnel laws (Eqs. (2.8) & (2.9) in Section 2.2.2 in Chap. II).  

The basic concept for retrieving SSM from the SMOS TB observations, as for the 

other passive measurements, is based on the large contrast of the dielectric constant values of 

the soil (see Section 2.2.2 in Chap. II). The Dobson dielectric model was used in previous 

releases of the SMOSL2 SSM algorithm and was later replaced by the Mironov model, which 

results in more accurate and higher retrieved SSM at the global scale (Mialon et al., 2014).  

The effective soil temperature is computed following a simplified formulation 

developed by (Wigneron et al., 2008): 

𝑇𝑔 =  𝑇𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ + 𝐶𝑡(𝑇𝑠𝑜𝑖𝑙 𝑠𝑢𝑟𝑓 − 𝑇𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ)                                                    3 − 4 

where: 

Ct              is a parameter depending mainly on frequency and SSM, 

Tsoil depth is the soil temperature at depth (between ~ 0.5 and 1m), and 

Tsoil surf     is the surface soil temperature (between ~ 1 and 5 cm). 

Tsoil depth and Tsoil surf can be obtained from land surface models. Tsoil depth and Tsoil 

surf in the SMOSL2 algorithm are obtained from the ECMWF. According to (Choudhury et 

al., 1982), Ct is a constant (~ 0.246 at L-band) that depends only on frequency. However 
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Wigneron et al. (2008) found that Ct depends also on soil moisture. When the soil is very dry, 

soil layers deeper than 1 m for dry sand contribute significantly to the soil emission, and the 

value of Ct is lower than 0.5. When the soil is very wet, the soil emission originates mainly 

from layers at the soil surface, and Ct ≈ 1. Ct can be computed using a simplified formulation, 

which is used in the L-MEB model, developed by Wigneron et al. (2001): 

𝐶𝑡 = [
𝑤𝑠

𝑤0
]

𝑏𝑤0

                                                                                                             3 − 5 

where:  

ws  is the surface soil moisture at about 0–2 cm, and 

w0 and bw0 are semi-empirical parameters depending on specific soil characteristics (e.g., 

texture, structure, and density). The values w0 = 0.3 m
3
/m

3
 and bw0 = 0.3 are used as default 

values in the L-MEB model. 

When the bare surface is not flat, Fresnel law (Eqs (2.8) & (2.9) in Section 2.2.2 in 

Chap. II) should be corrected for surface roughness with a purpose to account for the effects 

of surface scattering as follows (Kerr et al., 2013a; Wigneron et al., 2007; wigneron et al., 

2010): 

𝑟𝑔𝑝(θ) = ((1 − 𝑄)𝑟𝑏𝑝 + 𝑄𝑟𝑏𝑝) exp(−𝐻(𝑆𝑀)𝑐𝑜𝑠𝑁𝑅𝑝(𝜃))                              3 − 6 

where: 

 rgp is the rough surface reflectivity,   

Q is a polarization coupling factor, 

H is an effective surface roughness dimensionless parameter which can be computed as: 

H = (2 k σ)
2
 where k is the wave number and σ is the surface root mean square height,  

NRp  is an integer (N=2) used to parameterize the dependence of the roughness effects on 

incidence angle, and 

rbq  is the smooth surface reflectivity for alternate polarization. 

Table 3.1 presents the values of the different parameters used for bare soils (Kerr et 

al., 2013a) in the SMOSL2 algorithm. 
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Table 3 - 1 Bare soil parameters (Kerr et al., 2013a). 

Surface TB of bare soil Input Parameter Name Range Units 

Dobson or Mironov model to 
compute soil dielectric constant : 

εb 
Note: Mironov model does not 

require S, ρb , ρ s 

S Sand fraction 0-100 % 

C Clay fraction 0-100 % 

ρb Dry bulk soil density 0.5-2.5 g
3
/cm

3
 

ρ s Soil particle density 2-3 g
3
/cm

3
 

SM Soil moisture 0-0.5 m
3
/m

3
 

Sal Soil salinity 0-12 Ppt 

F Frequency 1.4 Ghz 

Tg 
Effective surface-deep soil 

temperature 
250-350 K 

Fresnel equations to compute the 
εb Bare soil dielectric constant 

[F/m] 
specular reflectivity H & V for 

smooth air-soil boundary rbp 

εb Bare soil dielectric constant  F/m 

θ incidence angle 0-55 Deg 

Introduce soil roughness to 

compute bare soil scattering / 

reflectivity : rgp 

rbp 
Specular smooth soil 

reflectivity 
0-0.6 - 

θ Incidence angle 0-1.25 Rad 

Q 
H/V polarization coupling 

factor 
0-0.5 - 

H Surface roughness parameter 0-5 - 

NRp Power law of cos (θ) 0-5 - 

Computing effective soil 

temperature 

Tsoil 

depth 

Soil temperature at depth 

(~at 46 cm) 
250-350 

K 

Tsoil 

surf 

Soil temperature at surface 

(~ at 3.5 cm) 
K 

W0 Texture parameters used to 

compute the coupling factor 

Ct for effective soil 

0.05-2 m
3
/m

3
 

bw0 0-2 - 
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2- Low vegetation (grassland, crop):  

The τ – ω model (Mo et al., 1982; Wigneron et al., 2007) is used to approximate the 

effects of vegetation, which attenuates soil emission and contributes to the emitted radiation, 

on the satellite signal. This model is mainly based on the optical depth τ, to parameterize the 

vegetation attenuation properties, and the single scattering albedo ω, to parameterize the 

scattering effects within the canopy layer. According to the τ − ω model, the emission from 

soil and vegetation is the sum of three components: (i) the direct emission from vegetation, 

(ii) the direct emission from soil attenuated by the canopy, and (iii) the direct emission from 

vegetation reflected by the soil and attenuated by the canopy layer (Mo et al., 1982; Wigneron 

et al., 2007). This is formulated as follows: 

 

𝑇𝐵𝑝 = (1 − ω𝑝)(1 − γ𝑝)(1 + γ𝑝𝑟𝑠𝑝)𝑇𝑐 + (1 − 𝑟𝑠𝑝)γ𝑝𝑇𝑔                               3 − 7 

 

where:  

Tg  is the effective soil temperature [K], 

Tc  is the effective vegetation temperatures [K], 

rsp  is the soil reflectivity, 

ωp  is the single scattering albedo, and 

 γp  is the vegetation attenuation factor (transmissivity), which can be estimated as follows: 

γ𝑝 = exp (
−𝜏𝑝

𝑐𝑜𝑠 𝜃
)                                                                                                       3 − 8 

where: 

τp is the vegetation optical depth and 

θ is the observation angle. 

More details on the values of the parameters used for low vegetation and the τ – ω 

model can be found in (Kerr et al., 2013a; Wigneron et al., 2007). 
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3- Forest (coniferous, evergreen, and deciduous): 

An algorithm specific for forest is only applied when a large fraction of land is covered by 

forests. When a large fraction of land is covered by forests, TB is computed as follows 

(Ferrazzoli et al., 2002): 

𝑇𝐵𝑝 = (1 − ω𝑓)(1 − γ)(1 + γ𝑝𝑟𝑔𝑝)𝑇𝑐 + (1 − 𝑟𝑔𝑝)γ𝑇𝑔                                   3 − 9 

where:  

Tg  is the effective soil temperature [K], 

Tc  is the effective vegetation temperatures [K], 

rgp  is the soil reflectivity, 

ωF  is the equivalent albedo, and 

γp  is the vegetation transmissivity, which can be estimated as follows: 

γ = exp (
−𝜏𝑓

𝑐𝑜𝑠 𝜃
)                                                                                                       3 − 10 

where: 

𝜏𝑓 represents the contributions due to crown, litter, and understory. 

The basic algorithm used for forests is, in general, similar to the one used for low 

vegetation with some differences: 

•  A  simple 𝜏𝑓 constant (in law vegetation), and 

•   ωf (in law vegetation) may be considered constant (i.e., independent on angle, 

polarization and time), with a value of 0.08.  

4- Open water 

Contributions from the extended water surfaces (e.g., ocean for coastal pixels, rivers, 

canals, lakes, ponds, flooding, etc.) are taken into account in the SMOSL2 SSM 

algorithm. The emission from water bodies is estimated using the Fresnel equations (Eqs. 
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(2.8) & (2.9) in Section 2.2.2 in Chap. II) with replacing the soil magnetic permeability by 

the water magnetic permeability. The real and imaginary parts of the complex dielectric 

constant are computed using the modified Debye equation (Kerr et al., 2013a; Ulaby et al., 

1986). For information on how other surface types such as saline water, dry sand, very dry 

soils, rocks, etc. are dealt with in the SMOSL2 algorithm, readers are directed to (Kerr et 

al., 2013a; Kerr et al., 2012).  

3.1.3.3 The SMOSL3 SSM algorithm 

The SMOSL3 algorithm, adopted at the CATDS, is based on the SMOSL2 SSM 

algorithm, described shortly in the previous Section. The main differences with the SMOSL2 

are that SMOSL3 takes into account several revisits simultaneously in a multi-orbit retrieval 

and are produced as gridded (NetCDF) maps not swath-based maps as the SMOSL2 products. 

The input datasets for the SMOSL3 algorithm are the same as these used for the SMOSL2 but 

on a different grid (EASE-Grid). This grid was preferred as it is mostly used by the 

community (Jacquette et al., 2010).  

The SMOSL3 SSM algorithm produces daily products using three multi-angular 

acquisitions during the synthesis period (Jacquette et al., 2010): One for the product date (the 

reference day), one before and one after the product date; the data are selected from a search 

period of 7 days centered on the reference day (Kerr et al., 2013b). This approach increases 

the number of views available, hence, more nodes are considered for the retrieval, which 

results in a larger coverage and more geophysical parameters can be derived. An overview of 

the SMOSL3 SSM processing chain at CATDS is displayed in Fig. 3.6. For a detailed 

description of the different steps of the algorithm, readers are directed to (Kerr et al., 2013b).  
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Fig. 3 - 6 Overview of the CATDS SMOSL3 SSM processing chain (Kerr et al., 2013b). 

Processors steps are colored in blue and products are colored in green. UDP: User Data 

Product, DAP: Data Analysis Product, ADF: Auxiliary Data File, and DPGS: Data 

Processing Ground Segment. 
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3.1.4 SMOS RFI issues  

The negative impact of RFI (Radio Frequency Interference) on the passive microwave 

radiometers data has been a serious problem in the last decades (Njoku et al., 2005), which 

should be well identified and removed in order to maintain the science value of the space-

borne observations. Since the launch of the SMOS satellite, it was noticed that the quality of 

its TB observations is negatively impacted by unnatural emissions, the so-called RFI. 

Although SMOS measures TB in a protected frequency window of (1.400 -1.427) GHz, 

preserved by the ITU Radio communication Sector (ITU-R) regulations for radio-astronomy 

and remote sensing satellite services (see Table 2.4 in Section 2.2.2 in Chapter II), its 

observations are still impacted by the RFI (Daganzo-Eusebio et al., 2013). The RFI is defined 

as the TB intensity that exceeds the radiation emitted by natural sources (Daganzo-Eusebio et 

al., 2013; Oliva et al., 2012) and it is mainly manmade emissions (Oliva et al., 2012): 

- TV stations 

- Radio transmission 

- Global Positioning System (GPS) L3 transmission channel 

- Military radars 

- Telecommunication and television relays not properly filtering harmonics 

- Unauthorized emissions within the protected passive band coming from active 

sources. 

The effects of the RFI can be, generally, classified into three categories (Daganzo-

Eusebio et al., 2013; Oliva et al., 2012):  

 Low RFI emissions, which are similar to natural levels or below and are very 

challenging to detect leading to retrieve wrong SSM. 

 Moderate RFI emissions, which can be easily detected and, thus, corrected. 
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 Strong RFI emissions, which influence larger areas. Strong RFI sources distort the 

whole snapshot's TB and lead to very high TB values, which exceed the naturally 

observed TB emitted by the Earth's surface. This TB cannot be used to retrieve SSM.  

A clear RFI was noticed in the first SMOS products (Camps et al., 2010); 

consequently the development of effective approaches to mitigate and detect the RFI has been 

priority since the launch of SMOS. Several algorithms have been and are being developed to 

deal most effectively with the problems caused by the RFI contamination (Camps et al., 2010; 

Oliva et al., 2012). A first and simple detection method for the RFI was applied on SMOSL2 

which relies mainly on excluding all unreasonable TB values. A natural physical temperature 

times the emissivity gives directly reasonable TB, so with knowing the ranges of this 

reasonable TB, other non-natural TB values can be isolated. 338 K is the maximum physical 

temperature that was ever recorded, so BTs values higher than 340 K originate from man-

made transmitters (Daganzo-Eusebio et al., 2013). These conditions enable to build a global 

probability of RFI occurrences, for a specific time period, based on (Daganzo-Eusebio et al., 

2013): 

𝑝 =
NRFIX + NRFIY

NSNAP𝑝
                                                                                              3 − 11 

    where: 

NRFIX     are the number of TBs detected as contaminated on X antenna polarization, 

NRFIY     are the number of TBs detected as contaminated on Y antenna polarization, and 

NSNAPp   is the total number of observed TBs.  

Fig. 3.7 displays the latest available worldwide probability of RFI occurrences maps 

for 24-04-2014 ascending and descending (http://www.cesbio.ups-tlse.fr/SMOS_blog/). It can 

be seen that RFI is not uniformly distributed, with particularly strong RFI over Europe, Japan, 

India, China, and the Middle East. Nevertheless, there is no or little RFI over most of 
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America, Australia and south Africa, whereas the ocean is almost free of RFI with the 

exception of some cases of interferences coming from emitting ships (Daganzo-Eusebio et al., 

2013). 

 

Fig. 3 - 7 probability of RFI occurrences for 20140427 ascending (bottom) and descending 

(top). Source: [http://www.cesbio.ups-tlse.fr/SMOS_blog/]. 
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Several short, medium, and long-term actions and strategies were done since the 

launch of SMOS to deal most effectively with RFI issues (Daganzo-Eusebio et al., 2013; 

Oliva et al., 2012):  

 Cooperate with the National Spectrum Management Authorities (NSMA) to advance 

the progress about the investigation of the RFI sources and tracking the illegal 

transmitters and switching them off. 

 Report the detected RFI sources to the NSMA and request for their support to initiate 

investigations to increase the awareness at the international level to fulfil the ITU 

Radio-Regulations, aiming at prohibiting any emissions and respecting the maximum 

levels recommended for unwanted emissions in the passive band. 

 Enhance the RFI flagging processes in the data products which prevent retrieving 

SSM from contaminated regions.  

 Develop new RFI mitigation algorithms to filter or remove the RFI impact. 

The ESA has made many efforts and succeeded to contact 45 administrations, mostly 

in Europe and Asia. As a result, 42% of the RFI sources were successfully identified and 

switched off (Daganzo-Eusebio et al., 2013). 

Finally, RFI detection algorithm is progressively improved, therefore, caution should 

be taken when working with SMOS products by considering the version of the product. In 

V5.01, for instance, a temperature threshold linked to the surface expected emissivity was 

considered to filter RFI; whereas in previous versions V4.00, a fixed 340 K threshold was 

used.  
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3.2 ASCAT  

3.2.1 ASCAT mission overview 

The Advanced Scatterometer (ASCAT) is an active microwave sensor that transmits 

electromagnetic pulses and measures the electromagnetic wave reflected by the surface 

(Bartalis et al., 2008; Wagner et al., 2013). It was launched in October 2006, following the 

European Remote-Sensing Satellites 1 and 2 (ERS 1 and 2) launched in 1991 and 1995, 

respectively, aboard the Meteorological Operational Platforms (METOP–A; Fig. 3.8) and 

METOP–B since 2012 . METOP-A has a sun-synchronous orbit which crosses the equator at 

09:30 and 21:30 local solar time for descending and ascending orbits, respectively (Wagner et 

al., 2013). The ASCAT instrument operates at C-band (5.3 GHz, wavelength = 5.7 cm) in 

vertical vertical (VV) polarization, which inherits and continues the role of the ERS1 & 2 

scatterometers (Wagner et al., 2013). The ASCAT is a real-aperture radar system, thus it has a 

lower spatial resolution (25-50 km) compared to other instruments such as the synthetic-

aperture radar (Wagner et al., 2013). The main purpose of ASCAT and its first application 

was to measure wind speed over the oceans (Wagner et al., 2013). Another application of the 

ASCAT was the SSM retrievals on the mainland, as many studies (Bartalis et al., 2007a; 

Naeimi et al., 2009) have shown that soil moisture can be related, expressed as percentage, 

relatively to the historically highest and lowest ASCAT backscatter measurements. See Table 

3.3 for more information on the ASCAT and MetOp –A Platform.  
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Fig. 3 - 8 ASCAT on orbit and its geometry. Source: [the European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT) website (www.eumetsat.int)]. 

 

3.2.2 ASCAT SSM algorithm 

The Vienna University of Technology (TU- Wien) in Austria developed an algorithm 

to retrieve SSM data from active microwave backscatter measurements, which was initially 

introduced by (Wagner et al., 1999b) and later improved by (Naeimi et al., 2009). This 

algorithm relies on several assumptions (Bartalis et al., 2008; Wagner et al., 2013): 

(i) There is a linear relationship between the backscattered signal (σ
0
 expressed in 

decibels) measured by ASCAT and the SSM,  

(ii) There is a strong dependency between the backscattered signal and the 

incidence angle, which is illustrated in Fig. 3.9, 

(iii) The surface roughness and land-cover patterns do not vary in time (static), and  

http://www.eumetsat.int/
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(iv)  The backscattered signal is affected by the vegetation phenology on a seasonal 

scale and vegetation cycle does not change from year to year. 

Fig. 3.9 shows the relationship between the σ0 and the soil moisture and vegetation 

(Wagner et al., 1999a), where the σ0 may increase or decrease when vegetation grows and 

there is an incidence angle where the σ0 is stable in spite of seasonal changes in above ground 

vegetation biomass (Wagner et al., 2013). 

 

Fig. 3 - 9 Relationship between the backscatter coefficient (σ0) and the surface soil moisture 

and vegetation. Adapted from Wagner et al. (1999a). 

 

The soil Water Retrieval Package (WARP) software, realized with the programming 

language IDL at TU-Wien, is used to generate the ASCAT SSM products. It uses the change 

detection method (Fig. 3.10) (Wagner et al., 2013), to produce the SSM from the ASCAT σ0 

observations at the global scale. Soil moisture retrieval form the ASCAT σ0 measurements 

involve several processing steps (Bartalis et al., 2008): resampling the ASCAT measurements, 

using a Hamming weighting function with radius 18 km, in orbit geometry to a fixed Discrete 
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Global Grid (DGG), normalizing the ASCAT Level 1B backscatter observations based on 

their acquisition azimuthal angle (applying a correction bias), extrapolating all backscatter 

observations taken over the entire incidence angle range spanning from 18° to 59° to a 

reference incidence angle of 40°, which was found optimal for minimum extrapolation errors, 

and calculate the average σ0 (40°) based on the backscatter triplet, estimating the backscatter 

noise, correcting for the seasonal effects of the vegetation, determining dry and wet 

backscatter, and calculating surface soil moisture (%) between the historically wettest 

(highest) and driest (lowest) reference values σ0(40°).  

 

 

Fig. 3 - 10 TU-Wien change detection approach for SSM retrieval using radar backscatter 

signal. After Verstraeten et al. (2007). 

 

The change detection method estimates the SSM index (t) (~ 2 cm) based on scaling the 

backscatter observations between highest (100% saturation) and lowest (0% driest), in one of 

the last processing steps, assuming that the soil moisture changes linearly with the σ0 

observations, which can be described as (Wagner et al., 2013):  
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𝑆𝑆𝑀𝑖𝑛𝑑𝑒𝑥 (𝑡) =
𝜎0(𝑡, 𝑖) − 𝜎𝑑𝑟𝑦

0 (𝑖)

𝜎𝑤𝑒𝑡
0 (𝑖) − 𝜎𝑑𝑟𝑦

0 (𝑖)
                                                                  3 − 12 

     where 𝜎0(𝑡, 𝑖) is the measured backscatter, given in m
2
/ m

2
 or Decibels (dB), at time t 

and under incidence angle i (40) and is given by: 

 

𝜎0 [
𝑚2

𝑚2
] =

𝜎

𝐴
      𝑜𝑟    𝜎0[𝑑𝐵] = 10𝑙𝑜𝑔𝜎0 [

𝑚2

𝑚2
]                                                3 − 13 

where: 

A is the geometric antenna area [m²] 

σ  is the radar scattering cross section [m²], which can be found in Section 2.2.2.2 

in Chap.II as Eq. (2.10). 

Detailed information on these processing steps and mathematical formulations can be 

found in (Bartalis et al., 2007b; Bartalis et al., 2008). 

This algorithm provides a standardized SSM index in a unit of degree of saturation 

(i.e., the SSM content expressed in percent of porosity (Hillel, 1982)). Multiplying the degree 

of saturation with the porosity gives a direct estimation of the volumetric water (m
3
/m

3
) 

content. Readers are directed to (Wagner et al., 2013) for more details on the physical concept 

of the TU-Wien SSM algorithm. 

There are several versions of the WARP processor; WARP 5.5 is the latest software 

version available for the retrieval of SSM from ASCAT scatterometer data, which was used in 

Chap. V. A new version of the WARP processor (WARP 6.0) is to be released in the near 

future. 
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3.2.3 ASCAT Products 

The ASCAT products, in general, are categorized into different levels (Bartalis et al., 

2008): 

• Level 0 (L0): raw instrument datasets (unprocessed) transmitted from the spacecraft to the 

ground stations in binary form, 

• Level 1a: reformatted L0 datasets for the successive processing, 

• Level 1b (L1b): backscatter coefficients are calibrated and geo-referenced and their quality 

is controlled in full resolution, 

• Level 2 (L2): L1b data are converted to geophysical parameters (SSM), and 

• Level 3: L2 data are resampled or gridded. 

3.3 AMSR-E  

3.3.1 AMSR-E mission overview 

In June 2002, the Advanced Microwave Scanning Radiometer (AMSR- E) sensor was 

launched aboard the AQUA satellite by the National Aeronautics and Space Administration 

(NASA) (see Fig. 3.11), which, however, due to some problems with rotations of its antenna, 

stopped working in October 2011. The AQUA satellite is on a sun-synchronous orbit at 705 

km equatorial altitude and inclination of 98.2
о
, with an ascending overpass time around 13:30 

hours local at the equator and descending overpass time around 01:30 (Demarest et al., 2001; 

JAXA, 2006).  
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     Fig. 3 - 11 AMSR-E aboard AQUA satellite. Source: [http://aqua.nasa.gov/] 

 

AMSR-E records TB at six frequencies: 6.9 (C-band), 10.65 (X-band), 18.7 (Ku-

band), 23.8 (K-band), 36.5 (Ka-band), and 89 (W-band) GHz (horizontal and vertical 

polarizations) at a single incidence angle of 55°, with a spatial resolutions of 56 km (6.9 and 

10.65 GHz), 25 km (18.7 and 23.8 GHz), 15 km (36.5 GHz), and 5 km (89 GHz) (JAXA, 

2006). This mission is further detailed on the website of NASA: 

http://www.ghcc.msfc.nasa.gov/AMSR/index.html and in JAXA (2006), its main 

characteristics are summarized in Table 3.3 at the end of this chapter. 

The AMSR-E TB observations are contaminated by RFI particularly in the C-band 

frequencies in North America and Japan (Njoku et al, 2005). The RFI problems at C- and X- 

band in AMSR-E have been already investigated (Kidd, 2006; Li et al., 2004; Njoku et al., 

2005). More recently, (Lacava et al., 2013) implemented the Robust Satellite Techniques 

(RST) approach using AMSR-E data at C-band to identify RFI source locations over land at 

global scale. Lacava et al. (2013) have confirmed previous studies that large parts of North 

http://aqua.nasa.gov/
http://www.ghcc.msfc.nasa.gov/AMSR/index.html
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America and several zones in India, South America, and Japan are mostly contaminated by 

the RFI.  

There are several algorithms which have been developed in order to retrieve SSM 

from the AMSR-E TB measurements. The official and first product is the NSIDC (National 

Snow and Data Centre, (Njoku et al., 2003)), which was shown to be able to reproduce the 

dynamics of SSM (Rüdiger et al., 2009). Along with the official product and other algorithms, 

the Vrije Universiteit Amsterdam (VUA) in cooperation with the NASA (VU-NASA) (Owe 

et al., 2001) developed an algorithm to retrieve SSM, surface temperature, and optical 

thickness at X and C-bands (the former is used when the latter is contaminated by the RFI) 

(Owe et al., 2001). The product of this later algorithm was used in Chap. IV and it is briefly 

described in the following Section. 

3.3.2 AMSR-E VU-NASA algorithm:  

The VU-NASA algorithm implements the LPRM (Land Parameter Retrieval Model, 

(Owe et al., 2001; Owe et al., 2008) model to the TB acquisitions from the AMSR-E sensor in 

order to retrieve the SSM. The diagram displayed in Fig. 3.12 represents the algorithm of the 

LPRM, which is based on a forward radiative transfer model. The LPRM algorithm consists 

in five main modules: dielectric mixing model, smooth surface reflectivity, rough surface 

emissions, vegetation, and radiative transfer model, which are described in details in the 

Algorithm Theoretical Baseline Document (Chung et al., 2013). These five components are 

used to simulate a TB which is then compared to the TB acquired by the AMSR-E sensor. 

SSM is changed (input at the top of Fig. 3.12) until the difference between the TB modelled 

and observed is at its minimum (weighted measurement accuracy difference). The LPRM 

algorithm retrieves the SSM and vegetation optical depth (τv) simultaneously from the 

AMSR-E observations at C-and X‐band frequencies using iterative optimization technique; 
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whereas surface temperature is computed from the Ka-band frequency. The vegetation optical 

depth (τv) is computed using the Microwave Polarization Difference Index (MPDI) (Chung et 

al., 2013). 

The TB (Tb in Fig 3.12) observations measured by AMSR-E in LPRM are described 

using a simple radiative transfer model (Mo et al., 1982): 

 

𝑇𝐵𝑠,𝑝 =  𝑇𝑠𝑒𝑟,𝑝Γ𝑣 + (1 − ω)𝑇𝑣(1 − Γ𝑣)

+ (1 − ω)(1 − 𝑒𝑟,𝑝)𝑇𝑣(1 − Γ𝑣)Γ𝑣                                               3 − 14  
 

where:  

Ts is the thermodynamic temperatures of the soil [K], 

Tv is the thermodynamic temperatures of the vegetation [K], 

Γv is the vegetation transmissivity, which is assumed to be equal for vertical and 

horizontal polarization,  

er is the rough surface emissivity,  

TBu and TBd are the upwelling and downwelling atmospheric brightness temperatures [K], 

respectively, and 

ω is the single scattering albedo. 

The subscript p denotes either horizontal (H) or vertical (V) polarization. 

er is calculated in LPRM as follows (Wang & Choudhury, 1981): 

 

𝑒𝑟 = 1 − 𝑄(𝑟𝑠,𝑝2 + (1 − 𝑄)𝑟𝑠,𝑝1)𝑒−𝐻𝑐𝑜𝑠𝜃                                                          3 − 15 

where: 

Q is the polarization mixing factor, 

H is the roughness height, and 

rs is the surface reflectivity and p1 and p2 are opposite polarizations (horizontal or 

vertical).  
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Γv is calculated in LPRM as follows: 

Γ𝑣 = exp (
−𝜏𝑣

𝑐𝑜𝑠𝜃
)                                                                                                        3 − 16                                                                                                   

where τv is the optical depth and θ is the incidence angle. 

 

 

 

Fig. 3 - 12 Schematic diagram of the entail methodology of LPRM model. Adapted from 

Chung et al. (2013). 
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Eq. (3.13) consists of three terms: the first term represent the emission (attenuated by 

the vegetation canopy) from the soil, the second term represents the emission from vegetation, 

and the third term represents the downwelling radiation from the vegetation and reflected 

upwelling by the soil (attenuated by the vegetation canopy).  

The soil wilting point and porosity information in the LPRM algorithm were obtained 

from the FAO soil texture map (FAO, 2000); the other parameters (τv, ω, H, and Q) were 

given fixed values. The values of the different parameters used in the LPRM algorithm for the 

different frequencies are presented in Table 3.2. 

Table 3 - 2 Values of the different parameters used in LPRM for the different frequencies. 

Adapted from Chung et al. (2013). 

 

Parameter C-band (~6.9 GHz) 
X-band (~10.8 

GHz) 

Ku-band (~19 

GHz) 

τv 0.01 0.01 0.05 

ω 0.05 0.06 0.06 

H 0.09 0.18 0.13 

Q 0.115 0.127 0.14 

 

Finally, in the LPRM algorithm, the RFI is detected based on an 

index of vertically polarized TB at C-band to vertically TB at X-band (Li et al., 2004). Two 

important things have to be noted about the AMSR-E VU-NASA SSM datasets: 

- The AMSR‐LPRM retrieval does not rely on calibration to local site conditions 

- The LPRM algorithm does not need ancillary datasets. 
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3.4 Pre-Processing 

 
Satellite soil moisture retrieved from observed brightness temperature is subject to 

some factors (strong topography, water bodies, etc.) that can strongly perturb the observed 

brightness temperature. Brightness temperatures emitted by the Earth surface, as a natural 

emission, are also affected by artificial sources originating from man-made emissions (e.g. 

satellite transmissions, FM broadcast, etc.), so called Radio Frequency Interference (RFI) 

(Njoku et al., 2005; Oliva et al., 2012). Therefore, remotely sensed datasets are often 

associated with flags to filter these potential effects.  

Quality control was applied to SMOSL3, AMSRM, and ASCAT prior to the evaluation 

based on quality flags associated with the remotely sensed datasets. For SMOSL3, Data 

Quality IndeX (DQX), index related to the quality of the retrieved parameter and RFI were 

used in the data selection. SMOSL3 datasets were rejected when DQX > 0.06 m
3
/m

3
, DQX is 

equal to fill value (meaning the retrieval has failed), Percentage of RFI > 30% (which is a 

daily RFI indicator), and Probability of RFI > 30% (which was computed from a moving 

window average of RFI events over several months). For AMSRM, the soil moisture error 

(SME), based on error propagation analysis, related to the sensor characteristics and 

vegetation optical depth, was used in the data selection. AMSRM datasets were rejected when 

SME > 0.35 m
3
/m

3
. For ASCAT, a noise error (ERR), which is based on Gaussian error 

propagation related to the sensor characteristics and incidence angle uncertainty, an estimated 

standard deviation of the backscatter signal, was used in the data selection. ASCAT datasets 

were rejected when ERR > 14% (Draper et al., 2012).  

Furthermore, all the datasets were re-projected from their original coordinate systems 

onto a regular 0.25° × 0.25° grid using a nearest neighbor approach (e.g., Draper et al., 2011; 

Rüdiger et al., 2009; Scipal et al., 2008). Finally, all the remotely sensed datasets (SMOSL3, 

AMSRM, and ASCAT) were screened, applying additional static masks, to remove grid cells 
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with (i) steep mountainous terrain (> 10%), (ii) wetland fraction ( > 5%) (Draper et al., 2012), 

and (iii) frozen soil conditions (soil temperatures < 276 K).  

In Chapters 4 and 5, we perform global-scale comparisons of three SSM datasets 

(AMSRM, SMOSL3, and SM-DAS-2 in Chapter 4, and ASCAT, SMOSL3, and MERRA-

Land in Chapter 5). In each 0.25° × 0.25° pixel, the selected statistical indicators, detailed in 

Chapters 4 and 5, were computed only when the compared three SSM products were 

simultaneously available. Therefore, the number of SSM data elements used in the time series 

of Chapter 4 was identical for AMSRM and SMOSL3, and the number of SSM data elements 

used in the time series of Chapter 5 was identical for ASCAT and SMOSL3. This number of 

data elements is illustrated in Fig. 3.13. 
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Fig. 3 - 13 The number of data elements considered for (a) SMOSL3 and AMSR-E in Chapt. 

4, (b) SMOSL3 and ASCAT in Chapt.5. 
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Table 3 - 3 The main characteristics of SMOS, ASCAT, and AMSR-E missions and SSM products used in this Ph.D. research work. 

 

Mission SMOS ASCAT AMSR-E 

Satellite/ 
Spacecraft 

SMOS METOP - A & B AQUA 

Agency ESA/CNES EUMETSAT/ESA NASA 

Sensor Passive MIRAS Active ASCAT Passive AMSR-E 

Launch 2nd, Nov. 2009 19th, Oct. 2006 4th, May 2002-1st, Oct. 2011 

Design life Minimum 3 years 5 years 6 years 

End of data 
availability 

ongoing ongoing 09/2011 

Orbit 
Polar (Sun-synchronous, 

dawn/dusk, quasi-circular orbit. 

Polar (orbit at an angle of 98.7° to the 

equator, Sun-synchronous) 
Polar (Sun-synchronous, near-polar orbit 

Equator crossing 
time (local solar 

time) 

6.00 am for ascending and 18.00 

pm for descending 

21:30 pm for ascending and 09:30 am 

for descending 
13:30 pm for ascending 01:30 am for descending 

Altitude (km) 763 817 705 

Spacecraft 
operations control 

center 
CNES, Toulouse, France 

European Meteorological Satellite 

Organization (EUMESAT) 

National Space Development Agency of Japan 

(NASDA) 

Centre frequency 
(GHz) 

1.413 (L-band; 21cm) 5.255 (C-band, 5.7 cm) 6.925 10.65 18.7 23.8 36.5 89.0 

Band width (MHz) 24 Microwave radar 350 100 200 400 1000 3000 

Polarization 
H & V (polarimetric mode 

optional) 
VV H & V 

Incidence angle 0-55 ° 

25–53° (mid-beam); 

34–64° (fore- and at 

beams) 

55 ° 

Swath width (km) 1000 2* 520 1445 
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Mission SMOS ASCAT AMSR-E 

Spatial resolution 
(km) 

(30-50 ), Average 35 km at 

center of field of view 
25 & 50 

75 × 43 51 × 29 27 × 16 32 × 

18 14 × 8 6 × 4 

Radiometric 
resolution 

0.8-2.2 K  0.3 0.6 0.6  0.6 0.6 1.1 

Temporal 
resolution (revisit 

time) 
3 days revisit at Equator ~2 days for covering global 

~3 days at the equator and more frequently at 

higher latitudes 

Daily global 
coverage 

~82 % ~82 % 90 % 

Model for retrieval L-MEB (Wigneron et al., 2007) WARP (Bartalis et al., 2007b) LPRM (Owe et al., 2008) 

Forward model 
 

Radiative transfer 

model 
Change Detection 

Radiative transfer 

model 

Simultaneous 
retrievals 

 
 
 

Soil temperature 

Vegetation optical depth 

 Roughness 

None 

Soil temperature 

Vegetation optical depth  

Surface temperature 

Soil moisture unit 
 

    Volumetric soil moisture      

                 (m
3
/m

3
) 

Degree of saturation (0-1 or %) 

relative value (0 = dry and 100 = 

saturated) 

            Volumetric soil Moisture (m
3
/m

3
) 

 

Grid 
Fixed ISEA4-9 Discrete Global 

Grid (SMOSL2) EASE grid  

           (SMOSL3) 

Swath geometry 

WARP 5 Grid (sinusoidal DGG) 
Regular Grid 

Spatial coverage 60
o
S 180

o
W - 80

o
N 180

o
E 60

o
S 180

o
W - 90

o
N 180

o
E 60

o
S 180

o
W - 90

o
N 180

o
E 

Soil moisture 
accuracy 

0.04 m
3
/m

3
 - 0.06 m

3
/m

3
 

Pixel spacing 
15 km (SMOSL2) 

25km (SMOSL3) 
12.5 km 0.25° 

Auxiliary datasets 
Several static and dynamic 

auxiliary datasets 
None FAO soil texture map (FAO, 2000) 
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Mission SMOS ASCAT AMSR-E 

Quality flags 
RFI Prob 

Data quality index, etc. 

Soil moisture error 

Topography index 

Wetland fraction etc. 

Soil moisture error 

Product version 
used in this Ph.D. 

SMOSL3 (RE01, V 2.48 and 

2.5) 
WARP 5.5 LPRM Level 3 

Reference URL http://www.catds.fr/Products http://www.ipf.tuwien.ac.at/radar http://www.falw.vu/~jeur/lprm/ 
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Chapter IV 
 

4.    Global-scale evaluation of two 
satellite-based passive microwave soil 
moisture datasets (SMOS and AMSR-E) 
with respect to Land Data Assimilation 

System estimates1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 This chapter has been published as:  A. Al-Yaari, J.-P. Wigneron, A. Ducharne, Y. Kerr, P. de Rosnay, R. de 

Jeu, A. Govind, A. Al Bitar, C. Albergel, J. Muñoz-Sabater, P. Richaume, A. Mialon, Global-scale evaluation of 

two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data 

Assimilation System estimates, Remote Sensing of Environment, Volume 149, June 2014, Pages 181-195, ISSN 

0034-4257, http://dx.doi.org/10.1016/j.rse.2014.04.006. 
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4.1 Introduction 

 

Soil moisture (SM) is a key environmental variable, which interacts with vegetation 

and ecosystem functioning (Bolten et al., 2010; Daly & Porporato, 2005), water resources 

(Dobriyal et al., 2012), and the climate system. It is central to land–atmosphere interactions 

due to its positive control on evapotranspiration, with feedback loops that are usually negative 

on air temperature (Cheruy et al., 2013), and still not well understood on rainfall (Taylor et 

al., 2012). SM also influences the dynamics of all the above mentioned processes by buffering 

or memory effects, with consequences on the persistence of extreme events, climate and 

hydrologic predictability, and even anthropogenic climate change trajectories (Entekhabi et 

al., 1996; Koster et al., 2004a; Koster et al., 2010; Quesada et al., 2012; Seneviratne et al., 

2013; Teuling et al., 2010). 

As a result, accurate SM initialization is crucial to the quality of most water-related 

environmental forecasts up to at least seasonal forecasts, including numerical weather 

predictions (NWP) (Beljaars et al., 1996; De Lannoy et al., 2013; de Rosnay et al., 2012; de 

Rosnay et al., 2013; Drusch & Viterbo, 2007; Koster et al., 2006).  

In particular, it is important to achieve an accurate SM initialization at the scale of the forecast 

models, which can exceed 0.5° × 0.5° for NWP and climate models. In situ SM measurements 

can now be routinely achieved with an accuracy as high as 0.025 m
3
/m

3
 (Walker et al., 2004). 

However, considering the high spatial variability of SM and the poor density of in situ 

measurement sites, it is not possible to produce accurate large-scale estimate of SM from in 

situ measurement networks (Dorigo et al., 2011; Hollinger & Isard, 1994; Vivoni et al., 2008). 

A major alternative to estimate SM at the large scale is to rely on remote sensing 

satellites, using passive or active microwave sensors, which offer global coverage and good 

temporal repetitivity, but are only sensitive to a shallow layer of the soil. Historically, passive 

microwave sensors were first used, starting with the Scanning Multichannel Microwave 
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Radiometer (SMMR; 6.6, 10.7, 18.0 21, and 37 GHz channels;(Wang, 1985)) which operated 

on Nimbus-7 between 1978 and 1987, then the Special Sensor Microwave Imager (SSM/I) 

which started in 1987. Later passive sensors include the microwave imager from the Tropical 

Rainfall Measuring Mission (TRMM; 10, 19 and 21 GHz channel; (Bindlish et al., 2003; Gao 

et al., 2006), the Advanced Microwave Scanning Radiometer on Earth Observing System 

(AMSR-E; from 6.9 to 89.0 GHz; (Njoku & Li, 1999)) which operated on the AQUA satellite 

between 2002 and 2011, and Coriolis Windsat which started in 2003 (Parinussa et al., 2011b). 

More recently, the Soil Moisture and Ocean Salinity (SMOS; 1.4 GHz) was launched in 2009 

(Kerr et al., 2010) and the upcoming SMAP (Soil Moisture Active/Passive) mission, 

including a radiometer at L-band, was planned by the National Aeronautics and Space 

Administration (NASA) and scheduled for launch in 2014 (Entekhabi et al., 2010). Low-

resolution active microwave sensors (scatterometers) have also been used (Bartalis et al., 

2007a; Wagner et al., 2007). 

Among all these microwave sensors, SMOS is the first satellite dedicated and 

specifically designed to measure directly surface SM (SSM) and sea surface salinity on a 

global scale (Kerr et al., 2010; Kerr et al., 2012) owing to its polar-orbiting 2-D 

interferometric radiometer at L-band. The Level 2 SMOS SSM products (SMOSL2) are 

derived from the multi-angular and fully polarized L-band passive microwave measurements 

(Kerr et al., 2012). A new global Level 3 SSM dataset (referred to as SMOSL3; (Jacquette et 

al., 2010)) has been released very recently. The general principle of the algorithm is similar to 

the one used for producing the standard Level 2 SSM products, but the quality of the SSM 

product is enhanced by using multi-orbit retrievals (Kerr et al., 2013b). 

Another strategy to produce large-scale estimates of SM relies on modelling, either 

directly using multimodel SM means (Dirmeyer et al., 2006; Georgakakos & Carpenter, 

2006), or via assimilation systems, which aim at optimally combining land surface models 
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and SM related observations (de Rosnay et al., 2012; Drusch & Viterbo, 2007). This strategy 

has proved to be particularly fruitful and highlighted the need for accurate surface and root 

zone SM remotely sensed estimates (de Rosnay et al., 2012; de Rosnay et al., 2013; Draper et 

al., 2009b; Muñoz-Sabater et al., 2007; Reichle et al., 2007). The SM-DAS-2 analysis, for 

instance, is retrieved by assimilating ASCAT SSM products in the ECMWF (European 

Centre for Medium-Range Weather Forecasts) Land Data Assimilation System, and the 

resulting estimates of SM benefit from high quality analyzed atmospheric data (de Rosnay et 

al., 2011; de Rosnay et al., 2013; Drusch et al., 2009). 

Whatever their origin, the evaluation of global SSM products is needed to guide their 

correct use, and to improve our understanding of their strengths and weaknesses over a large 

spectrum of climate and environmental conditions across the world. Several studies have 

evaluated SSM products based on passive microwave sensors against in situ measurements 

and modelled data over different regions (Al Bitar et al., 2012; Albergel et al., 2012; Brocca 

et al., 2011; Dall'Amico et al., 2012; Draper et al., 2009a; Jackson et al., 2012; Lacava et al., 

2012; Leroux et al., 2011; Mladenova et al., 2011; Sahoo et al., 2008; Su et al., 2011). 

Although consistent results were generally obtained from the remotely sensed and modelled 

data, disagreements or biases between the different sources of SSM data were noted 

depending on the particular regions or time periods. For instance, Albergel et al. (2012) found 

that the SM-DAS-2 SSM estimates were closer to in situ measurements in terms of correlation 

than SMOS and ASCAT SSM products, in several stations situated in Africa, Australia, 

Europe, and the United States. 

In this context, we present in this study a global evaluation of two SSM datasets 

retrieved from passive microwave observations (SMOSL3 and AMSRM, respectively based 

on SMOS and AMSR-E observations) against the SM-DAS-2 product, which is used here as a 

reference, because it is the most consistent SM product compared to in situ SM data (Albergel 



97 

 

et al., 2012). In doing so, we have two specific objectives. The first objective is to provide the 

first assessment of the SMOSL3 product at global scale. The second objective is to compare 

SSM products retrieved from passive microwave observations at two different frequency 

bands: L-band (~ 1.4 GHz) for SMOSL3 vs. C-band (~ 5 GHz) for AMSRM. Although the 

performances of L-band vs. C-band for SSM retrievals have been compared against 

experimental or simulated data sets (Calvet et al., 2011; Wigneron et al., 1993), no global 

study based on satellite data has yet been made, to our knowledge. L-band is generally 

considered to be the optimum frequency band for SM monitoring due to (i) lower attenuation 

effects by vegetation (ii) lower atmospheric effects and larger effective sampling depth (~ 0–

3 cm; (Escorihuela et al., 2010)) than C-band. 

The SSM datasets used and the methodology for their evaluation are described 

in Section 4.2. The results are then presented in Section 4.3. Finally, discussion and 

conclusions are given in Section 4.4. 

4.2 Materials and methods 

4.2.1 Global-scale soil moisture datasets 

The main characteristics of the three SSM datasets considered in this study are 

summarized in Table 4.1. The evaluation was performed for the period 03/2010–09/2011, 

which corresponds to the full period of availability of the two satellite-based products: tests 

made during the SMOS commissioning phase ended in March 2010 while the AMSR-E 

spatial mission ended in October 2011. 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0010
http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0060
http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0090
http://www.sciencedirect.com/science/article/pii/S0034425714001448#t0005
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Table 4 - 1 Main characteristics of the surface soil moisture datasets used in this study. Note 

that all products are daily and global products re-sampled to 0.25° (~ 25 km). 

 

Soil moisture 
datasets 

Incidence 
angle (°) 

Data type 
and 

frequency 

Sampling 
depth and 

unit 

Temporal 
coverage 

Reference 

SMOS level 3 
(SMOSL3) 

0–55 

Remotely 

sensed 

(L-band, 

passive) 

~ 0–3 cm 

(m
3
/m

3
) 

2010–

present 

(Jacquette et 

al., 2010) 

AMSR-E, 
NASA-VUA 
Algorithm 
(AMSRM) 

55 

Remotely 

sensed 

(C-band, 

passive) 

~ 0–1 cm 

(m
3
/m

3
) 

2002–2011 
(Owe et al., 

2008) 

ECMWF 
SM-DAS-2 

(DAS2) 
– 

Land Data 

Assimilation 

System 

0–7 cm 

(m
3
/m

3
) 

2010–

present 

(de Rosnay et 

al., 2013; 

Drusch et al., 

2009) 

 

4.2.1.1 SMOSL3 

The SMOS satellite was launched in November 2009 and is operated by the European 

Space Agency (ESA), as part of its Living Planet Programme, and the Centre National 

d'Etudes Spatiales (CNES) in France. SMOS operates at L-band with a spatial resolution of 

35–50 km (Kerr et al., 2001; Kerr et al., 2010). The SMOS mission aims to monitor SSM at a 

depth of about 3 to 5 cm and an accuracy of 0.04 m
3
/m

3
. SMOS provides global coverage 

with a 3-day revisit at the equator with a morning ascending orbit at 0600 h local time and an 

afternoon descending orbit at 1800 h (Kerr et al., 2012). 

The CATDS Centre (Centre Aval de Traitement des Données; http://catds.ifremer.fr/) 

recently provided re-processed global maps of SSM at different temporal resolutions: daily 

products, 3-day global products insuring a complete coverage of the Earth surface, 10-day 

composite products, and monthly average products, the so-called SMOS level 3 products 

(SMOSL3). These products are presented in the NetCDF format on the EASE grid (Equal 
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Area Scalable Earth grid) with a spatial resolution of ~25 km × 25 km. The main principle of 

the algorithm used to retrieve SSM is the same as the one used by the ESA operational 

algorithm for producing the standard Level 2 SSM products (Kerr et al., 2012; Wigneron et 

al., 2007). In both Level 2 (L2) and Level 3 (L3) products, multiangular observations are used 

to retrieve simultaneously SSM and vegetation optical depth at nadir (τ-NAD) using a 

standard iterative minimization approach of a cost function (Statistical Inversion Approach as 

discussed in Wigneron et al. (2003). The main difference with the L2 processing is the fact 

that the L3 processing takes into account over each pixel several revisits simultaneously in a 

multi-orbit retrieval approach (Jacquette et al., 2010; Kerr et al., 2013b). In the L2 algorithm, 

SSM and τ-NAD are retrieved from multiangular observations made using one SMOS 

overpass at 0600 or 1800 h local time. Conversely, in the L3 algorithm, SSM and τ-NAD are 

retrieved from multiangular observations made using several overpasses (3 at most) over a 7-

day window. Over the short 7-day window, it is considered that optical depth at nadir (τ-

NAD) varies slowly in time. In the L3 processor, this is accounted for by assuming that the 

retrieved values of τ-NAD are correlated using a Gaussian auto-correlation function over the 

7-day window (while the SM values are considered as uncorrelated). The multi-orbit retrieval 

approach was selected to produce the L3 product as it improves the SM retrieval (Kerr et al., 

2013b): 

I. Increasing the number of overpasses over a given node taking into account several 

revisits (multi-orbit approach) increases the number of observations available for a node. 

As the number of observations increases, more nodes are considered in the retrieval 

process, resulting in a larger coverage. This is mostly significant at the edge of the swath 

for which a single overpass does not provide enough brightness temperature (TB) data 

for an accurate retrieval process (Wigneron et al., 2000). 
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II. Considering that the vegetation optical thickness is correlated over a given period of time 

adds more constraints in the retrieval process and the robustness of the retrieval is 

improved. 

SMOSL3 (ascending and descending) datasets include flags that can be used to filter 

out the datasets (Jacquette et al., 2010; Kerr et al., 2013b; Kerr et al., 2008). More details on 

the flags used to filter SMOSL3 data are given in Section 4.3. 

Note that new versions of the SMOSL3 data set will be produced based on re-

processing activities in the near future and will lead to improvements in the product accuracy. 

The version of SMOSL3 used in the present study was the latest version available at CATDS. 

The version of the processor is V2.48, corresponding to a Level-2 version higher than ~V5.0, 

although there is not a strict correspondence between Level-2 and Level-3 versions. 

4.2.1.2 AMSRM 

The Aqua satellite is operated by the National Aeronautics and Space Administration 

(NASA). It was launched in May-2002 and carries, among others, the AMSR-E radiometer 

providing passive microwave measurements at six frequencies (6.925, 10.65, 18.7, 23.8, 36.5, 

and 89.0 GHz) with day-time ascending orbit at 1330 h and night-time descending orbit at 

0130 h (Owe et al., 2008). The datasets cover the period from June 2002 to October 2011. On 

this latter date, AMSR-E on board the NASA Aqua satellite stopped producing data due to a 

problem with the rotation of its antenna. 

The AMSR-E sensor was one of the first sensors to target SSM as a standard product 

(Njoku et al., 2003; Njoku & Chan, 2006). Various algorithms have been developed to 

retrieve SSM from the AMSR-E observations. The main ones were developed at (i) NASA 

which produced the standard AMSR-E-NASA algorithm (Njoku et al., 2003), (ii) the Japan 

Aerospace Exploration Agency (Koike et al., 2004), and (iii) the “Vrije Universiteit 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0060
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Amsterdam” in collaboration with NASA, referred to as the NASA-VUA algorithm (Owe et 

al., 2001; Owe et al., 2008). The NASA-VUA algorithm uses a three-parameter retrieval 

approach (i.e., SSM, vegetation optical depth, and soil/canopy temperature are retrieved 

simultaneously) to convert multi-frequency TB measured by AMSR-E to SSM. The retrieved 

SSM products accuracy was shown to be 0.06 m
3
/m

3
 for sparsely to moderately vegetated 

canopies (de Jeu et al., 2008). 

A range of studies (Brocca et al., 2011; Draper et al., 2009a; Hain et al., 2011) 

addressed the evaluation of the NASA-VUA SSM products based on combinations of 

observations made at different AMSR-E frequencies, mainly using C-band (6.925 GHz) 

and/or X-band (10.65 GHz). Using in situ observations and/or modelled SM data as reference, 

these studies showed good performance of the NASA-VUA products in capturing the SSM 

variability at global scale. 

In this paper a version (Level 3 gridded data) of the NASA-VUA product exclusively 

based on the AMSR-E C-band and descending orbit observations was used. It is referred 

hereafter to as AMSRM. Descending orbit (night time) SM products were shown in previous 

studies to be more accurate and less affected by temperature-related errors than ascending 

orbit (day time) products (Draper et al., 2009a; Jackson et al., 2010; Kerr & Njoku, 1990; Su 

et al., 2011). The use of C-band (6.925 GHz) data, i.e. the lowest frequency available for the 

AMSR-E instrument, maximizes the soil sampling depth (~ 0–1 cm) of the retrieved product 

(Owe et al., 2008) and minimizes the sampling depth mismatch with the SMOSL3 product. 

4.2.1.3 ECMWF soil moisture analysis 

This study used the SM-DAS-2 SM analysis product as a reference. SM-DAS-2 is 

produced at ECMWF in the framework of the H-SAF project of EUMETSAT (Satellite 

Application Facility on support to operational Hydrology and water management; more 

information at http://hsaf.meteoam.it/). The SM-DAS-2 analysis uses the Hydrology Tiled 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271745&_issn=00344257&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fhsaf.meteoam.it%252F
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ECMWF Scheme for Surface Exchanges over Land (HTESSEL; (Balsamo et al., 2009; van 

den Hurk & Viterbo, 2003)). HTESSEL is a multilayer model where the soil is discretized in 

four layers (thickness: 7, 21, 72 and 189 cm). SM-DAS-2 relies on a dedicated advanced Land 

Data Assimilation System: a simplified Extended Kalman Filter able to ingest information 

contained in observations close to the surface (temperature and relative humidity at 2 m) as 

well as ASCAT SM retrieval (de Rosnay et al., 2013; Drusch et al., 2009), which is used to 

correct the model SM prognostic variable. SM-DAS-2 analysis is available at a spatial 

resolution of about 25 km (Gaussian reduced grid T799). The first layer (0–7 cm) is 

considered only, to represent the relatively low sampled soil layer of the SSM estimates 

derived from microwave remote sensing sensors (~ 0–3 cm at L-band and ~0–1 cm at C-

band). SM-DAS-2 was shown to represent SM variability well. For instance, Albergel et al. 

(2012) have used in situ measurements from more than 200 stations located in western Africa, 

Australia, Europe, and the United States to determine the reliability of SM-DAS-2 to 

represent SM over 2010. Correlation values with in situ data were found to be very 

satisfactory over most of the investigated sites located in contrasted biomes and climate 

conditions with averaged correlation (R) values of 0.70 and an estimate of the averaged error 

is about 0.07 m
3
/m

3
. SM-DAS-2 is produced in the framework of the H-SAF project from 

EUMETSAT and it benefits from the latest model and analysis developments from ECMWF. 

This is why it was selected as the benchmarking dataset for this study. However it is 

important to emphasize that, as shown by the validation statistics above, SM-DAS-2 does not 

represent the absolute truth. It was used as a reference in this paper because at the time of this 

study it was the product that best captures the SM dynamics. On the longer term, when the 

SM retrieval algorithms will be fully calibrated, it is likely that satellite products such as 

SMOS SM will be used as reference data sets for SM product comparison studies. SM-DAS-2 

is a SM index product; however in this study it was converted to volumetric SM (in m
3
/m

3
) 
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using global soil texture and hydraulic soil properties derived from the Food and Agriculture 

Organization digital (FAO) soil map as described in Balsamo et al. (2009). Hereafter, this 

product will be referred to as “DAS2”. 

4.2.2 Pre-processing 

Quality control was applied to SMOSL3 and AMSRM prior to the evaluation based on 

quality flags associated with the remotely sensed datasets. The uncertainties associated with 

the NASA-VUA retrieval algorithm are based on error propagation analysis, related to the 

sensor characteristics and vegetation optical depth, as described in Parinussa et al. (2011c). 

AMSRM SSM values with an estimated SSM uncertainty greater than 0.35 m
3
/m

3
 were 

rejected. Flags such as Data Quality IndeX (DQX) and Radio Frequency Interferences (RFI) 

are also associated with the SMOSL3 data and were used in our data selection. The DQX is 

an index related to the quality of the retrieved parameter. It takes into account the 

uncertainties associated with the parameter retrievals, depending on the number of multi-

angular observations available, the surface conditions (dry or wet soil conditions, dense or 

sparse vegetation cover, etc.), the TB accuracy, etc. (Kerr et al., 2012; Wigneron et al., 2000). 

The DQX value is provided in volumetric SSM moisture units between 0 and 0.1 m
3
/m

3
. In 

this study, we selected data with a value of DQX lower than 0.06, as we considered this ratio 

represents a good compromise between the need to keep sufficient data and the need to ensure 

data quality. Radio Frequency Interferences come from man-made emissions (e.g. satellite 

transmissions, aircraft communications, radar, TV radio-links, FM broadcast, and wireless 

camera monitoring systems). It perturbs the natural microwave emission emitted by the Earth 

surface and measured by passive microwave systems (Njoku et al., 2005; Oliva et al., 2012). 

With the SMOS interferometric system (based on a three arm Y-shaped antenna array), RFI 

effects are complex and oscillating interference effects may happen (Oliva et al., 2012). These 
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effects could not be systematically detected and the SMOS L3 product is still contaminated by 

RFI effects. To illustrate the spatial patterns of the probability of RFI occurrences on SMOS 

observations, a map is given in Fig. 4.1. This map represents the three-year (i.e., 2010–2012) 

average of probability of RFI occurrences and shows the regions where the undetected RFI 

effects are the most likely. The RFI flags provided in the SMOSL3 data set are given in an 

attempt to filter out the most significant RFI effects. In the present study, SMOSL3 data were 

rejected if one of the following conditions was fulfilled: 

(i) DQX >0.06 and DQX is equal to fill value (meaning the retrieval has failed), 

(ii) Percentage of Radio Frequency Interference (RFI fraction) > 30%, which is a daily 

RFI indicator, and 

(iii) Probability of RFI (RFI Prob) > 30%, which was computed from a moving window 

average of RFI events over several months. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0005
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Fig. 4 - 1 Probability of Radio Frequency Interference (RFI) occurrences in the L-band 

SMOS observations. The map represents the average probability of RFI occurrences for the 

period 2010–2012. 

 

Within the NASA-VUA algorithm for AMSR-E, Radio Frequency Interference is 

detected according to the method of (Li et al., 2004). This method is based on absolute 

differences between the different frequencies. In the AMSRM product, the standard 

configuration of NASA-VUA was used and C-band observations were used generally. Only 

when an RFI threshold value was reached, NASA-VUA made a switch to X band 

observations (Chung et al., 2013). 

Based on flags, AMSRM and SMOSL3 data were also rejected in regions of strong 

topography or wetlands. AMSRM, SMOSL3, and the reference DAS2 dataset were provided 

on different grids and formats. So pre-processing was required to allow a comparison of all 

products on the same grid. All the datasets were re-projected from their original coordinate 
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systems onto a regular 0.25° × 0.25° grid using a nearest neighbor approach (e.g., Draper et 

al., 2011; Rüdiger et al., 2009; Scipal et al., 2008). 

4.2.3 Comparison metrics 

Three statistical indicators were computed between pairs of the remotely sensed 

(SSMRS) and reference SSM products (SSMREF). We considered the Pearson correlation 

coefficient (R), the mean difference (Bias), and the Root Mean Squared Difference (RMSD) 

between the remotely sensed (SSMRS) and the reference SM products. The equations for the 

calculation of the three indicators are given as follows (Brocca et al., 2011; CECR, 2012): 

𝑅 =  
∑ (SSMREF(i) − SSMREF)(SSMRS(i) − SSMRS)𝑛

𝑖=1

√ ∑ (SSMREF(i) − SSMREF)2 ∑ (SSMRS(i) − SSMRS)2𝑛
𝑖=1

𝑛
𝑖=1      

             4 − 1 

Bias =       (SSMRS − SSMREF)                                                                                4 − 2 

RMSD =  √(SSMRS − SSMREF)2                                                                            4 − 3 

where the overbar denotes the mean operator, n is the number of SSM data, SSMRS is 

the satellite-based SSM product (SMOSL3 and AMSRM), and SSMREF is the reference SSM 

(DAS2). We used RMSD instead of RMSE (Root Mean Squared Error) because the reference 

SSM values may contain errors and cannot be considered as the “true” SSM values. 

4.2.4 Regional-scale analyses 

This regional study was made to compare the three different datasets for a variety of 

conditions. We compared the SSM time series from SMOSL3, AMSRM, and the reference 

(DAS2) over eight sites which were selected taking into consideration contrasting vegetation 

types and climate conditions (see Fig. 4.2). A summary of the main characteristics of the eight 

selected sites is given in Table 4.2.  

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
http://www.sciencedirect.com/science/article/pii/S0034425714001448#t0010
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Table 4 - 2 Locations and type of biome of the eight sites selected to evaluate the SSM time 

series (Fig. 4.2). All sites have the same surface area (i.e., ~ 360,000 km
2
). 

 

 
Region 

Coordinates 
(center) 

(longitude–
latitude) 

Biome (vegetation) 

Köppen–
Geiger 
climate 

classification 

1 Brazil, Amazon Basin (− 53° W to − 8° S) 
Tropical humid 

(evergreen rain forest) 
Af & Am 

2 
Deccan Plateau Region 

of India 
(78° E–21° N) 

Tropical semi-arid 

(Isolated trees and bush 

in open grassland) 

BSk, Aw, & 

BSh 

3 Central Australia (133° E to − 23° S) Desert temperate BWh 

4 

North–West America, 

Great Basin Region 

(Nevada, Utah, Idaho 

and Washington) 

(− 114° W–40° N) Desert temperate BWh & BWk 

5 

North–East America, 

Interior Plains Region 

(Iowa, Illinois, 

Minnesota, and 

Wisconsin) 

(− 94° W–43° N) 

Temperate humid 

(forest, grass land, 

agriculture) 

Aw & Dfa 

6 

Sahel, Savanna Region 

of Nigeria, Cameroon, 

Central African 

Republic and Chad 

(18° E–89° N) 

Tropical semi-arid 

(isolated trees and bush 

in open grassland) 

Aw 

7 
Central Europe 

(Austria, France, 

Germany and Italy) 

(4° E–47° N) 

Temperate forest 

(Deciduous broadleaf 

forest) 

Cfb 

8 
Argentina, Pampas 

Region 
(− 53° W to −26°S) 

Temperate humid (grass 

land) 
Cfa 

 

This evaluation was limited to only eight sites which cannot span the whole range of 

soil, vegetation, and climate conditions present at global scale. However, this evaluation 

allowed us to analyze and illustrate some major features of the three datasets. To compare the 

temporal dynamics of SSM between remotely sensed and reference observations, we removed 

the systematic differences by matching the remotely sensed time series to the reference time 

series as discussed by Dorigo et al. (2010). This was done by normalizing the original 

remotely sensed data (the data referred to as ‘original’ in the following) are the data extracted 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
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directly from the SMOSL3 or AMSRM data set and expressed in volumetric units (m
3
/m

3
) 

SSMor so that they have the same mean and standard deviation as the reference SSM dataset 

SSMREF according to the following equation (Brocca et al., 2010; Draper et al., 2009a): 

SSM(t) = SSMREF +
σ(SSMor)

σ(SSMREF)
(SSMor(t) − SSMor)                                    4 − 4 

Here, SSM(t) stands for the rescaled remotely sensed retrievals at time steps t = 1,…, 

n, where n is the total number of observations, (SSMor) 𝑎𝑛𝑑 σ(SSMor) are the mean and 

standard deviation of the original remotely sensed retrievals, respectively, and 

SSM𝑅𝐸𝐹 and σ(SSMREF) are mean and standard deviation of the reference dataset, 

respectively. 

 

 

Fig. 4 - 2 Distribution of major biomes (Chesworth, 2008). The boxes on the map indicate the 

sites which were selected to illustrate the main features of the SMOSL3, AMSRM and DAS2 

products for a variety of vegetation and climatic conditions. 
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4.2.5 SSM seasonal anomalies 

All the above statistics were calculated for original SSM values, expressed in 

volumetric units (m
3
/m

3
). We also applied the above performance metrics to SSM anomalies. 

The anomaly time-series were calculated in order to avoid seasonal effects that can 

unrealistically increase the degree of correlation (Scipal et al., 2008) and to analyze the ability 

of remotely sensed SSM products to capture the day-to-day variability in the SSM time series. 

We computed the anomalies following the method described by Albergel et al. (2009). The 

anomalies SSManom(t) were computed as the difference to the mean for a sliding window of 

35 days, which was further scaled using the standard deviation in order to be dimensionless: 

SSManom(t) =
SSMor(t) − SSMor(t − 17 ∶ t + 17)

σ[SSMor(t − 17: t + 17)]
                                         4 − 5 

where SSMor(t) is the original SSM value at time t obtained from the satellite sensor 

or reference datasets, the over-bar and σ symbols are the temporal mean and standard 

deviation operators, respectively, for a time window of 35 days corresponding to the time 

interval [t − 17 days, t + 17 days]. The use of a ~ monthly window is a very common 

approach to compute SM anomalies (Brocca et al., 2011; Draper et al., 2013; Draper et al., 

2009b; Reichle et al., 2008). 

4.2.6 Global-scale analyses 

Global maps of (i) correlations (R), to assess the global consistency in the SSM 

variability at both long- (original) and short-term (anomaly) scales, (ii) RMSD, and (iii) bias 

between the reference and the two remotely sensed SMOSL3 and AMSRM SSM time series 

were computed. The performance indicators were computed for all common pixels on a daily 

basis. To analyze the effects of the vegetation and climatic conditions and to facilitate the 

interpretation of the results of the global comparison, the values of the three performance 
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indexes were averaged for a variety of biomes. These biomes represent different bioclimatic 

conditions and contrasting vegetation types. In this study we used the classification made 

by (Chesworth, 2008), illustrated in Fig. 4.2, who distinguished: “tundra”, “boreal semi-

humid”, “boreal humid”, “temperate semi-arid”, “temperate humid”, “Mediterranean cold”, 

“Mediterranean warm”, “desert tropical”, “desert temperate”, “desert cold”, and “tropical 

humid” biomes. 

The analysis of the results was also made accounting for the LAI (mean value 

computed over the pixel) to evaluate the link between the accuracy of the remotely sensed 

SSM products and the vegetation effects (in relation with vegetation density and biomass). To 

investigate this link, the global correlation results (original and anomalies) were averaged 

according to the global distribution of LAI values. The values of LAI were the long term-

mean LAI values taken from the Global Soil Wetness Project (Dirmeyer et al., 2006) 

illustrated in Fig. 4.3. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0015
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Fig. 4 - 3 Global map of the long term mean LAI in m
2
·m

− 2
 (Dirmeyer et al., 2006). 

 

 

4.3 Results 

4.3.1 Comparison of SMOSL3 ascending and descending overpasses 

Original SMOSL3 retrievals obtained from the ascending and descending overpasses 

were compared to the reference SSM data. In terms of correlation, a better performance of 

SMOSL3 for ascending orbits compared with descending orbits with respect to the reference 

can be clearly seen in Fig. 4.4. In much of the world (e.g., central USA, Europe, South 

America, and South Africa), ascending SMOSL3 retrievals were found to be better correlated 

to the reference datasets than descending SMOSL3 retrievals. This was expected because at 

dawn soil is often in near hydraulic equilibrium (Jackson, 1980), and factors affecting SM 

retrieval, such as vertical soil-vegetation temperature gradients, are minimized. In some 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0020
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places, however, particularly in India, Eastern USA, Eastern Australia, and the Middle East, 

descending SMOSL3 retrievals were found to be closer to the reference than the ascending 

ones. This result could be partly explained by the fact that ascending retrievals over these 

regions are highly affected by RFI (see Fig. 4.1), which is the main source of errors in the 

SMOS SSM products (Oliva et al., 2012). As the SMOS antenna is tilted forward by 32°, 

there is an asymmetry in the patterns of RFI contaminations between ascending and 

descending passes for a given ground location. For instance, when considering ascending 

overpasses over a given point in the Central Plains in the USA, the SMOS has a trajectory 

from South to North. And because the antenna is tilted by 32° toward the North, it picks up 

RFI emission from the Defense Early Warning (DEW) system in Northern Canada (the DEW 

line can be seen through the lighter blue band around the USA–Canada border in Fig. 4.1). 

Conversely, for descending overpasses over the same sites, the tilted antenna is looking in a 

more southerly direction and is not contaminated by these northern RFI sites. To get a global 

assessment of the differences between the SSM retrievals for the ascending and descending 

overpasses, we computed the global averaged value of the RMSD and R coefficient between 

the SMOSL3 data and the reference; we obtained for ascending: RMSD = 0.18 m
3
/m

3 
and 

R = 0.44 and for descending: RMSD = 0.20 m
3
/m

3
 and R = 0.41. Given that better 

performances were generally found for ascending retrievals, only SMOSL3 ascending 

overpasses will be considered in the following. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0005
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0005
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Fig. 4 - 4 Spatio-temporal comparison between SMOSL3 ascending (ASC) and SMOSL3 

descending (DESC) products in terms of correlation with respect to the reference (DAS2) 

product for the period 03/2010–09/2011. The map shows the areas where either SMOSL3 

ASC (red) or SMOSL3 DESC (green) correlates better with the reference. Pixels where ASC 

and DESC have similar performances (differences in the values of R are lower than 0.05) are 

shown in blue. Only significant correlations (p-value < 0.05) are presented. 

 

4.3.2 Comparison of the SSM time series over eight selected sites 

The time series of the three SSM products (SMOSL3, AMSRM, and DAS2) are 

compared in Fig. 4.5 for the eight selected sites described in Table 4.2. The SSM time series 

were spatially averaged over the whole site and normalized to have the same mean and 

standard deviation using the method given in Eq. (4.4). The eight sites were selected to 

illustrate the SSM dynamics in the three products for a variety in vegetation, soil, and climatic 

conditions (see Fig. 4.2). 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#t0010
http://www.sciencedirect.com/science/article/pii/S0034425714001448#fo0020
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
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Fig. 4 - 5 Comparison of the time series of the mean SSM (site averaged) derived from 

SMOSL3, AMSRM and DAS2 for the period 03/2010–09/2011 for the eight selected sites 

shown in Fig. 4.2. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
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In general, the seasonal dynamics of SSM for the three products were found to be 

similar. However, over the “tropical humid” site (Fig. 4.5a) the seasonal dynamic of the 

reference product is better reproduced by the SMOSL3 retrievals. Over this site, it can be seen 

that the seasonal trend in the AMSRM product is almost opposite to that of the two other 

products (SMOSL3 and DAS2): increasing trends in AMSRM correspond more or less to 

decreasing trends in both SMOSL3 and DAS2 and vice versa. Over the same site, it can be 

seen that there is a large plateau (~ six months from October to April) in the DAS2 values, 

which cannot be seen for the two other products. 

Over the site in India (Fig. 4.5b), a plateau for high values of SSM during the 

monsoon season can also be seen for DAS2 and not for SMOSL3 and AMSRM, but it is 

shorter (~ three months) than over the site in the “tropical humid” biome. Also, the transition 

from wet to dry conditions after the monsoon season is more abrupt for DAS2 than for the 

remotely sensed SSM values. Over this region, ascending SMOSL3 data are highly impacted 

by RFI from Northern India and surrounding countries (see Fig. 4.1) but they still reproduce a 

SSM dynamic, which is in good agreement with the AMSRM and DAS2 datasets. 

The site in Central Australia (Fig. 4.5c), is a desert area which has the advantage of 

being almost free of RFI contaminations at both L- (see Fig. 4.1) and C-bands (Njoku et al., 

2005) along with low vegetation and unfrozen conditions in general. In this area, both 

SMOSL3 and AMSRM were found to be very close to the reference and the very dry 

conditions were well depicted. There is generally good agreement between all three products 

in the detection of rain events over this desert area. It should be noted that during the wet 

season (May, June, July), the declining trend in the SSM time series based on SMOSL3 and 

DAS2 seems to be slightly steeper than the one retrieved from AMSRM. Also, during rain 

events, very high values of SSM can be seen for SMOSL3. Such results have already been 

noted in previous studies and could be explained by water ponding effects when soil is at 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0005
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0005
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saturation during intensive rain events (Al Bitar et al., 2012; Jackson et al., 2012; Wigneron et 

al., 2012). 

Over the two sites in the USA (Fig. 4.5d and e), and in the Sahel (Fig. 4.5f), there is 

generally good agreement between the three SSM products, but it can be clearly seen that 

there is a much larger scatter in the remotely sensed products than in the reference one 

(DAS2). During cold periods in the Great Basin Region in the USA (Fig. 4.5d) very low 

values can be seen (below 0.1 m
3
/m

3
). These values can be explained by the effect of soil 

freezing. In DAS2, the SSM values do not account for the frozen soil water content and its 

SSM estimates correspond only to the liquid soil water content. These peak values 

corresponding to “very dry conditions” cannot be seen in SMOSL3 and AMSRM, as frozen 

soil conditions were flagged and excluded in the remotely sensed products. In the site in Sahel 

(Fig. 4.4f), there is quite a good agreement between the general seasonal trends of all three 

SSM products. However, some outliers can be noted for AMSRM, especially when it rains 

and at the end of the wet season, and the scatter in the SMOSL3 dataset is much larger than 

that of the two other products. 

Finally, results for two sites in wet regions are illustrated in Fig. 4.5g (Central Europe) 

and Fig. 4.5h (Argentina). Even if the seasonal trend is relatively low over these two sites 

(SSM varying between 0.3 and 0.4 m
3
/m

3
), it can be seen that there is good general agreement 

between all three products. As was found in some previous figures, very high values in 

SMOSL3 SSM data can be seen in Fig. 4.5g during some rain events and very low values 

corresponding to freezing conditions can be seen in Fig. 4.5h for DAS2. In summary, all the 

three products behaved similarly over the different test sites considered in this study, each 

product having in some cases some caveats either irregular behavior or adversely affected by 

RFI effects. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0020
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0025
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4.3.3 Spatial analysis of SSM retrievals at global scale 

To get a more global evaluation of the SMOSL3 and AMSRM products, maps of the 

calculated statistical indicators (correlation coefficient (R) for both original SSM values and 

anomalies, RMSD and Bias) described in Section 4.3.2 are shown in Fig. 4.6a–h at global 

scale. In these maps, SMOSL3 and AMSRM were evaluated against the reference dataset 

(DAS2) for the period 03/2010–09/2011 and only significant correlations are presented. In 

this study, we consider that the correlation is statistically significant when the p-value is less 

than the significance level of 0.05 (p-value < 0.05 meaning that the probability of observing 

such a correlation value by chance is lower than 5%) as considered in several studies in this 

field (Albergel et al., 2012). 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0070
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
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Fig. 4 - 6 Pairwise comparison between the AMSRM (left panel) and SMOSL3 (right panel) 

SSM products with respect to the reference DAS2 product in terms of the correlation 

coefficient (R) based on original SSM data (a and b), the correlation coefficient (R) based on 

SSM anomalies (c and d), RMSD (m
3
/m

3
; e and f), and Bias (m

3
/m

3
; g and h) for the period 

03/2010–09/2011. Only significant correlations (p-value < 0.05) are presented. 
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In general, it can be seen that the three products have similar spatial patterns over most 

of the globe, although there are important differences between them in the amplitude of the 

temporal SSM variations. Fig. 4.6a and b shows that robust correlations between the global 

remotely sensed and the reference SSM products (R > 0.5) were found in the transition zones 

between wet and dry climates (e.g., Sahel), in the Great Plains (USA), Western Europe, 

Eastern Australia, India, South Africa, and the south-eastern region of Brazil. This can be 

explained by the strong seasonal annual cycle of SSM in these regions (Koster et al., 2004b). 

Conversely, remotely sensed datasets exhibited weak correlations (R < 0.20) against the 

reference in arid regions (e.g., Sahara) due to the small range of variation in the SSM values, 

which corresponds roughly to the remotely sensed retrieval accuracy (~ 0.04 m
3
/m

3
). Low 

correlations in high latitude regions can also be seen in Fig. 4.6a and b, where correlation 

values (R) drop below 0.25. The significant differences between satellites and model products 

in high latitude regions may partly be explained by the effect of frozen soil conditions. 

Correlation values (R) computed on seasonal anomalies, as described in Section 4.3.4, 

are shown in Fig. 4.6c and d. It can be seen that the global spatial patterns are relatively 

similar for both SMOSL3 and AMSRM, with better ability of SMOSL3 to capture the short-

term SM variability than AMSRM. The highest values of the R coefficient were found in 

eastern Australia, extreme South Africa, Western Europe, and Central America while the 

lowest values were found in the northern tundra region. 

A similar distribution of RMSD and bias values was found for both SMOSL3 and 

AMSRM products (Fig. 4.6e–h). Low RMSD and bias values were found in deserts and semi-

arid regions (e.g., the Sahara, the Arabian Peninsula, extreme South Africa, and Central 

Australia), while high RMSD and bias values were found in high latitude regions (e.g., in 

Northern Canada, Alaska, Northern Europe, and Siberia). Large differences between the 

remotely sensed and the reference SSM products were also found in tropical regions. In Fig. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0080
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
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4.6g and h, relatively similar patterns can be noted for both SMOSL3 and AMSRM at global 

scale but the values of the biases are quite different: a strong overestimation of the reference 

SSM values can be noted for AMSRM, especially in the high latitude and desert regions, 

while a strong underestimation can be noted for SMOSL3. 

To better identify the spatial differences in the results obtained for SMOSL3 and 

AMSRM, Fig. 4.7a and b shows the areas where SMOSL3 correlates better with the reference 

than AMSRM (red), where AMSRM correlates better with the reference than SMOSL3 

(green) and where the difference in the correlation coefficient (R) between both SMOSL3 and 

AMSRM is less than 0.05 (blue). The top panel shows results for the original SSM datasets, 

while the bottom panel shows results for anomalies, i.e. areas where either SMOSL3 or 

AMSRM better captured the short-term variability in the reference SSM values. In these maps 

only significant values are plotted (p-value < 0.05). In general, it can be seen that better 

correlations with DAS2 were obtained with SMOSL3 over regions with high to moderate 

vegetation density (e.g., in parts of Amazonia, Eastern Australia and the North-Central US). 

These latter regions are known to be little contaminated by RFI effects (see Fig. 4.1). On the 

other hand, it can be seen that AMSRM shows better correlations with DAS2 than SMOSL3 

in areas with low to moderate vegetation density and where there is a strong seasonality in the 

SSM variability (e.g., India, Western Australia, Sahara, and Arabian Peninsula). Poor results 

were also obtained systematically for SMOSL3 in regions known to be strongly contaminated 

by RFI effects (Middle East, Southern Europe, China, and India).  

When looking at anomalies, AMSRM and SMOSL3 have relatively similar 

performances over dry regions, but better correlations with the reference were obtained for 

SMOSL3 over most of the grid cells. 

 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0035
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0005
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Fig. 4 - 7 Pairwise comparison between the SMOSL3 and AMSRM SSM products with respect 

to the reference DAS2 SSM product in terms of correlations based on the original SSM data 

(a) or on SSM anomalies (b) for the period 03/2010–09/2011. The map show the areas where 

either SMOSL3 (red) or AMSRM (green) correlates better with the reference. Pixels where 

SMOSL3 and AMSRM have similar performances (differences in the values of R are lower 

than 0.05) are shown in blue. Only significant correlations (p-value < 0.05) are presented.  
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4.3.4 Biome influence 

To investigate more in depth the dependence of the results shown 

in Fig. 4.6 and Fig. 4.7 on the vegetation and climatic conditions, the statistical indicators 

were averaged for the twelve types of biomes described in Section 4.3.5 and illustrated 

in Fig. 4.2. The results are shown in Fig. 4.8a–d in terms of correlation (R) for original SSM 

data and anomalies, RMSD, and bias.  

The distributions of the correlation (R) and RMSD values as a function of biome types 

are quite similar for both SMOSL3 and AMRSM (Fig. 4.8a–c). In terms of correlation values 

computed from the original SSM data (Fig. 4.8a), the best results were obtained for biomes 

with relatively sparse vegetation covers (“Mediterranean warm”, “Mediterranean cold”, 

“temperate semi-arid”, “tropical semi-arid”, etc.), while the poorest results were found in 

Northern environments (“tundra”, “boreal semi-arid”, and “boreal humid”). Yet, the results 

are quite different for the “Tropical humid” biome, where performances of SMOSL3 were 

more coherent with DAS2 (R = 0.42) compared to the results found for AMSRM (R = 0.15). 

Fig. 4.8b shows that the mean correlation coefficients computed from the SSM 

anomalies are lower than the mean correlation coefficients computed from the original SSM, 

as the covariations imposed on all three datasets by the seasonal forcing are largely filtered 

out in SSM anomalies. The general pattern of the distribution of the R values as a function of 

the biomes is similar to the one obtained for the original SSM data. It seems that the short-

term variability in the SSM values is better detected by SMOSL3: better performances were 

obtained for SMOSL3 over all biomes, even if the correlation values are relatively small. 

 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0035
http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0085
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
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Fig. 4 - 8 Distribution of the statistical indicators between SMOSL3 (red) and AMSRM 

(green) and the reference as a function of biome types for the period 03/2010–09/2011. 

Statistics in terms of correlation coefficient based on original SSM data (a), correlation 

coefficient based on SSM anomalies (b), RMSD (m
3
/m

3
; c), and Bias (m

3
/m

3
; d) are computed 

at each grid cell and then averaged by biome type. The biome types are defined from the 

classification given by Chesworth (2008) shown in Fig. 4.2. Error bars represent 

mean ± standard deviation (SD) and only significant correlations (p-value < 0.05) are 

considered in the analysis.  

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0010
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In Fig. 4.8c, confirming previous results, the poorest performances (corresponding to 

the largest RMSD values), were obtained again in Northern environments (“tundra”, “boreal 

semi-arid”, and “boreal humid”) for both SMOSL3 and AMSRM, while the best results 

(smallest RMSD values) were obtained in desert regions (“desert temperate”, “desert 

tropical”) and in semi-arid regions. As discussed previously, in desert areas, the range in the 

SSM values simulated in DAS2 is relatively small and this fact partly explains the low values 

of RMSD computed. 

Finally, Fig. 4.8d shows that biases with respect to the reference dataset are opposite 

for SMOSL3 and AMSRM. In all biomes, AMSRM overestimates SSM DAS2 values while 

SMOSL3 underestimates them. Moreover, the bias between remotely sensed and reference 

SSM varies substantially across biomes. The bias is very large in northern environments for 

both SMOSL3 and AMSRM but it is also large in humid regions (“temperate humid”, 

“tropical humid”) for SMOSL3. The lowest biases were found in deserts (“desert temperate”, 

“desert tropical”, and “desert cold”) and in semi-arid regions (“temperate semi-arid”, 

“Mediterranean warm” and “Mediterranean cold”) for both SMOSL3 and AMSRM. 

4.3.5 Influence of leaf area index (LAI) 

Previous results showed that vegetation plays a key role in the performance results of 

the SMOSL3 and AMSRM products. To analyze in more detail the effect of vegetation, we 

computed the distribution of the correlation values as a function of the LAI. We chose to 

focus our study on the R correlation indicator as correlation is of particular interest for many 

hydrologic and atmospheric applications (Koster et al., 2009). In Fig. 4.9a and b, the 

correlation values shown in Fig. 4.6a and b (for original and anomaly SSM data) were 

averaged according to the values of LAI illustrated in the global map shown in Fig. 4.3. The 

results for both original SSM data (Fig. 4.9a) and anomalies (Fig. 4.9b) show that the 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0045
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0015
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0045
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0045
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performance of the remotely sensed SSM products (i.e., SMOSL3 and AMRSM) is strongly 

related to the distribution of the LAI values. In Fig. 4.9a, it can be seen that the values of the 

correlation coefficient (R) decrease almost linearly with the mean value of LAI for both 

SMOSL3 and AMSRM. The rate of the decrease is much larger for AMSRM than for 

SMOSL3. For AMSRM the value of R decreases from R ≈ 0.45 to negative correlation values 

(R ≈ − 0.1) as LAI increased from about 1 to 7. For the same increase in LAI values, the 

decrease in R for SMOSL3 is more limited: from R ≈ 0.4 to R ≈ 0.3. However, it should be 

noted that AMSRM provides slightly better performances than SMOSL3 when LAI is lower 

than 1 (i.e. over sparse vegetation covers), which corresponds to almost 50% of the pixels 

considered in this global analysis.  

In Fig. 4.9b, the same analysis is shown for anomalies. It can be seen that better 

performances were obtained for SMOSL3, whatever the range of LAI values. Moreover, for 

this latter product, the correlation values remain stable (R ≈ 0.3) as LAI values increase. 

Conversely, the values of the R coefficient decrease rapidly and continuously for AMSMR as 

LAI values increase: R ≈ 0.25 for LAI ≈ 1 down to R ≈ 0.03 for LAI ≈ 7. 
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Fig. 4 - 9 Distribution of the correlation coefficient (R) between SMOSL3 (red), AMSRM 

(green) and the reference dataset (DAS2) for the original SSM data (a) and anomalies (b) as 

a function of LAI for the period 03/2010–09/2011. Statistics are computed at each grid cell 

and then averaged by LAI intervals. The values of LAI were extracted from the map of 

(Dirmeyer et al., 2006) shown in Fig. 4.3. The percentage value (top of figure) provides the 

cover fraction (%) over continental surfaces corresponding to each LAI interval. Error bars 

represent mean ± standard deviation (SD) and only significant correlations (p-value < 0.05) 

are considered in the analysis. 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0015
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4.4 Discussion and conclusions 

This study investigated the performances of two remotely sensed SSM products 

(SMOSL3 and AMSRM) with respect to a reference SSM product (DAS2) at global scale, 

with 0.25° spatial sampling and a daily time step. The study was made during the whole 

period of common availability of the SMOS and AMSR-E products, i.e. after the test periods 

during the commissioning phase of SMOS and before AMSR-E stopped producing data 

(03/2010–09/2011). 

Both AMSRM and SMOSL3 generally showed a good agreement with the reference 

dataset and successfully captured the seasonal SSM variations present in the reference DAS2 

product. For instance, SMOSL3 and AMSRM performed well (in terms of correlation) in the 

transition zones between wet and dry climates and over semi-arid regions (e.g., Indian 

subcontinent, Great Plains of North America, Sahel, Eastern Australia, and South-eastern 

regions of Brazil). It is particularly important that the two remotely sensed SSM products 

being compared give consistent and correct results in these areas, where SM has been 

recognized to exert a strong influence on the weather/climate (e.g., Koster et al., 2004a; 

Taylor et al., 2012; Teuling et al., 2010). Conversely, both SMOSL3 and AMSRM exhibited 

weak correlations with the reference data in dry regions (e.g. Sahara, Arabian Peninsula, and 

Central Australia). These results could be related to the low range of variations in SSM in 

these regions, which roughly corresponds to the expected retrieval accuracy of the remotely 

sensed products (~ 0.04 m
3
/m

3
). 

We found quite opposite results in terms of bias for SMOSL3 and AMSRM: over all 

biomes, AMSRM overestimated SSM compared to the reference, while SMOSL3 

underestimated SSM. The analysis of the SSM anomaly time series, obtained by removing the 

seasonal cycle, showed that the short-term SSM dynamics were better captured by SMOSL3 

than by AMSRM at global scale. In addition, considering a variety of biomes, both SMOSL3 
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and AMSRM showed lowest performances in northern environments (“tundra”, “boreal semi-

arid”, and “boreal humid”), while the best performances were found over biomes with 

relatively sparse vegetation covers (“Mediterranean warm”, “Mediterranean cold”, “temperate 

semi-arid”, “tropical semi-arid”, etc.). In the “tropical humid” biome, SMOSL3 was found to 

be much better correlated to DAS2 than AMSRM. 

The results confirmed that vegetation plays a key role in the performance evaluation of 

the SMOSL3 and AMSRM SSM products. Over areas with sparse vegetation, with LAI 

values lower than 1, both SMOSL3 and AMSRM had relatively good and similar 

performances. However, for higher LAI values, SMOSL3 had a consistent performance, 

whereas the performance of AMSRM quickly deteriorated with the increase in foliar 

abundance. 

The fact that better performances could be obtained with SMOS (operating at L-band) 

than with AMSR-E (operating at C-band) over vegetated areas is not surprising. However this 

study presents one of the first studies confirming this effect with observations from sensors in 

space. In the passive microwave domain, L-band has long been considered as an optimal 

frequency to monitor SSM. When a vegetation layer is present over the soil surface, it 

attenuates the soil emissions and adds its own contribution to the emitted radiation measured 

by passive microwave radiometers. The retrieval algorithm attempts to decouple the effects of 

soil and vegetation in order to provide an estimation of SSM. However, as vegetation effects 

increase with increasing frequency (Calvet et al., 2011), the correction for vegetation effects 

is more complex at C-band (~ 6.6 GHz for AMSR-E) than at L-band (~ 1.4 GHz for SMOS). 

Moreover, SMOS has multi-angular capabilities which make it, theoretically, more efficient 

for decoupling the soil and vegetation effects than mono-angular spatial radiometers such as 

AMSR-E (Wigneron et al., 2000). The combination of both a L-band system and multi-

angular capabilities for SMOS compared to a C-band system and monoangular capabilities for 
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AMSR-E might explain the better performance of SMOS over biomes with dense vegetation 

cover (e.g., “tropical humid”) in Fig. 4.8a and b or for LAI values larger than 1 in Fig. 4.9a 

and b. However, it should be noted that AMSRM had comparable performances to SMOSL3 

(better performances if we consider the original SSM data and slightly lower performances if 

we consider anomalies) over sparse vegetation covers (with LAI ≤ 1), which represent more 

than 50% of the pixels considered in this global study. Future works will address in more 

depth the possibilities to exploit the complementary capabilities of both SMOS and AMRS-E 

to retrieve SSM over a gradient of vegetation density and to produce a coherent long term 

SSM product based on passive microwave sensors. 

Some other aspects should be considered in this evaluation. As noted in 

the Introduction Section, the effective SM sampling depth at L-band (~ 0–3 cm) is larger than 

at C-band (~ 0–1 cm). Over a shallower soil layer (0–1 cm) SSM is more prone to quick time 

variations, especially during drying-out periods, due to weather events (rainfall, wind, high 

insolation, etc.) than over deeper soils. This effect may lead to lower correlations with SSM 

measurements or retrievals, which are not made at the exact same time or over larger soil 

sampling depth. Moreover, in the present study, the sampling depth corresponding to the 

SMOSL3 SSM product (~ 0–3 cm) is closer to that of the reference (0–7 cm for DAS2), than 

the sampling depth of AMRSM. Therefore, the mismatch between the sampling depths of the 

different products considered in this study is more detrimental for AMRSM, though it is 

present for both satellite data sets. 

The effect due to the mismatch between the sampling depths of the different products 

may have an impact in the statistical indicators used in this study but it cannot fully explain 

the large and contrasting biases found between both the AMRSM and SMOSL3 products and 

the DAS2 reference. The positive bias in the AMSRM retrievals can be partially explained by 

the absence of correction in the NASA-VUA algorithm for open water bodies. It can also be 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0045
http://www.sciencedirect.com/science/article/pii/S0034425714001448#s0005
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caused by a wrong estimation of the effective temperature in NASA-VUA algorithm over 

northern regions, leading to positive bias in satellite retrievals (Owe et al., 2008). In contrast, 

the negative bias found in SMOSL3 is consistent with the results obtained in previous studies 

(Al Bitar et al., 2012; Albergel et al., 2012; Dall'Amico et al., 2012; Jackson et al., 2012; 

Lacava et al., 2012; Sanchez et al., 2012) comparing SMOS retrievals with in situ 

measurement networks in different regions of the world which all relied on the first release of 

the SMOS retrieval algorithm. RFI may increase the brightness temperatures (TB) measured 

by SMOS, leading to smaller retrieved SSM values and, thus, to a negative bias (Oliva et al., 

2012). However, Wigneron et al. (2012) showed that, even though no bias could be observed 

in the measured TB data over the VAS site in Spain, a strong negative bias could be noted in 

the SMOS SSM retrievals. Thus, the negative bias found in the SMOS SSM products 

(Fig. 4.8d) is likely to be related to some issues in the retrieval algorithm (e.g., accounting for 

pixel heterogeneity, use of auxiliary data, etc.) or in the L-MEB (L-band Microwave Emission 

of the Biosphere) forward modelling. For instance, recent results showed that the use of the 

dielectric soil model developed by Mironov et al. (2012), instead of the model of Dobson et 

al. (1985) led to improved results (the bias decreased by about 0.04 m
3
/m

3
 at global scale) and 

the New L2 SSM shows almost no negative bias. Moreover, improvements will be made by 

better accounting for the effects of litter, surface roughness, effective soil temperature, etc. 

(Grant et al., 2007; Saleh et al., 2009). 

Finally, it should be noted that even though the reference product used in this study 

(SM-DAS-2 from ECMWF) was found to be very reliable according to some recent studies 

(Albergel et al., 2012), estimates of SSM from LDAS cannot be considered as “ground truth” 

(Albergel et al., 2013a). One must keep in mind that when using them to evaluate other SSM 

products, the interpretation of the results is hampered by their own accuracy (the accuracy of 

LDAS itself and its required inputs such as the atmospheric forcing, observations, etc.). For 

http://www.sciencedirect.com/science/article/pii/S0034425714001448#f0040
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instance, Albergel et al. (2012) pointed out some non-realistic representation of SM in 

ECMWF products in some regions of the world (e.g. the Tibetan plateau), due to 

shortcomings in the description of soil characteristics, in the pedotransfer functions employed, 

and the difficulty of representing soil spatial heterogeneity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V 
 

5.    Global-scale comparison of passive 
(SMOS) and active (ASCAT) satellite based 
microwave soil moisture retrievals with 
soil moisture simulations (MERRA-Land)2 

 

 

 

 

 

 

 

 

                                                 
2
 This chapter has been published as: A. Al-Yaari, J.-P. Wigneron, A. Ducharne, Y.H. Kerr, W. Wagner, G. De 

Lannoy, R. Reichle, A. Al Bitar, W. Dorigo, P. Richaume, A. Mialon, Global-scale comparison of passive 

(SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations 

(MERRA-Land), Remote Sensing of Environment, Volume 152, September 2014, Pages 614-626, ISSN 0034-

4257, http://dx.doi.org/10.1016/j.rse.2014.07.013. 
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5.1 Introduction 

Soil moisture is a key variable in land surface and atmospheric systems, and has been 

identified as one of the “Essential Climate Variables” (Global Climate Observing System, 

2010). It plays a fundamental role in the partitioning of precipitation into infiltration and 

runoff and the partitioning of incoming radiation into sensible and latent heat (Daly & 

Porporato, 2005; Koster et al., 2004b; Western et al., 2002). Knowledge about global spatial-

temporal variability of soil moisture is thus fundamental to improve our understanding of the 

interactions between the hydrosphere, biosphere, and the atmosphere. 

Until now, global-scale studies on this topic were mostly based on modeled data 

(Seneviratne et al., 2006; Taylor et al., 2012). With the recent advances in global soil moisture 

retrievals from satellites in the past decade, we are now in the position to study the related 

processes based on observations. Global surface soil moisture (SSM) datasets have been 

produced based on active and passive microwave satellite observations, including the Soil 

Moisture and Ocean Salinity (SMOS) and the Advanced Scatterometer (ASCAT) SSM 

products (Bartalis et al., 2007a; Kerr et al., 2010; Njoku et al., 2003; Owe et al., 2008). See 

also Kerr (2007) and Wagner et al. (2007) for a detailed review. 

SMOS is the first passive satellite specifically designed to measure SSM (and sea 

surface salinity) on a global scale (Kerr et al., 2010; Kerr et al., 2012; Walker et al., 2001). 

Since its launch in November 2009, SMOS has been recording brightness temperatures at L-

Band (1.4 GHz) with an average spatial resolution of 43 km. The SMOS SSM products are 

derived from the multi-angular and full-polarization brightness temperature observations, 

using multi-orbital retrieval techniques (Kerr et al., 2012). SMOS SSM is available either in 

global mode (referred here to as SMOSL3; Jacquette et al., 2010 and Kerr et al., 2013b) or in 

swath mode from the European Space Agency (ESA) at the Data Processing Ground Segment 

(DPGS) (Level 2) (Kerr et al., 2013a). In this study, we used the SMOS level 3 (SMOSL3) as 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0395
http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0015
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its projection (EASE grid) and format (NetCdf) simplified considerably the analysis while 

retaining all the level 2 characteristics. The ASCAT sensor is a C-band scatterometer 

(5.2 GHz) operating on-board the Metop since 2006. Wagner et al. (1999b) proposed a 

method to retrieve SSM from ERS-1/2 scatterometer backscatter measurements. Naeimi et 

al. (2009) later improved it and the method is now referred to as the Vienna University of 

Technology (TU-Wien) change detection algorithm, which is presently employed for ASCAT 

data. 

Since these global SSM observations are relatively new, they have not yet been 

sufficiently evaluated and their accuracy is still unknown to some degree. It is therefore 

important (i) to investigate the consistency of the remote sensing products with independent 

SSM estimates, such as from land surface modelling, and (ii) to characterize their 

uncertainties. A better knowledge of the skill and uncertainties of the retrievals will help not 

only to improve the individual products, but also to optimize the fusion schemes adopted to 

create multi-sensor products, e.g. the essential climate variable (ECV) soil moisture product 

generated within ESA's Climate Change Initiative (Dorigo et al., 2012; Liu et al., 2011; Liu et 

al., 2012). This merged product has shown large potential for validating land surface models 

(Albergel et al., 2013a; Loew et al., 2013) and studying land–atmosphere–biosphere 

interactions (Barichivich et al., 2014; Miralles et al., 2014). 

To date, the validation of the SMOS and ASCAT SSM products has been focused on 

different regions of the world, primarily by comparing to in situ observations, which are 

limited in space and time (e.g., Al Bitar et al., 2012; Albergel et al., 2009; Albergel et al., 

2012; Brocca et al., 2010; Brocca et al., 2011; Leroux et al., 2011; Sanchez et al., 2012; 

Sinclair & Pegram, 2010; Su et al., 2011). A few studies compared microwave based SSM 

products to model simulations over larger domains (Al-Yaari et al., 2014; Dorigo et al., 2010; 

Draper et al., 2013; Parrens et al., 2012), thereby improving the knowledge of errors in the 



135 

 

satellite data across space and time. At the global scale, there is only, to date, one dedicated 

SM study that has been conducted to evaluate the SMOS level 2 (SMOSL2) against ASCAT 

SSM products. Leroux et al. (2013a) performed, at the global scale, a comparison between the 

SMOSL2 SSM products against the Advanced Microwave Scanning Radiometer for EOS 

(AMSR-E) and ASCAT SSM products taking the European Centre for Medium-Range 

Weather Forecasts (ECMWF) model simulations as a benchmark for the year 2010. This 

study showed that SMOS provided best results over Australia, North America, and Central 

Asia in terms of triple collocation errors. 

Here, we investigate the consistency of the latest SMOS and ASCAT products, against 

each other and compared to an independent reference, based on land surface SSM 

simulations. The analysis is conducted at the global scale, using newly re-processed SSM 

products, and for the period 05/2010–12/2012. SSM data from the supplemental land surface 

analysis of the Modern-Era Retrospective analysis for Research and Applications (MERRA-

Land) are used as the reference in this study. MERRA-Land data are suitable due to their 

global availability and their ability to capture the SSM spatial and temporal variability 

(Reichle et al., 2011). In addition, Albergel et al. (2013a) and Yi et al. (2011) showed very 

good performance of MERRA-Land in comparison with other reanalysis products and in situ 

data. 

The objectives of this study are (i) to compare distinct SSM retrieval products derived 

from satellite-based microwave observations at two different frequency bands, L-band 

(~ 1.4 GHz) for the passive SMOSL3 product and C-band (~ 5 GHz) for the active ASCAT 

product, (ii) to characterize the global error structure of the SMOSL3 and ASCAT SSM 

products, and (iii) to understand the spatio-temporal variability of SSM over a variety of 

biomes and climate regimes at global scale. To achieve these objectives this paper presents (i) 

a classical time series analysis using a temporal correlation analysis of original SSM and 



136 

 

anomalies, unbiased root mean square difference (ubRMSD), and mean bias, (ii) a space–time 

analysis using Hovmöller diagrams, and (iii) a triple collocation error (TCE) estimation to 

characterize the spatial distribution of errors in the SMOS and ASCAT retrievals. 

The three SSM datasets and the statistical methods used for the evaluation are 

presented in Section 5.2, results are presented in Section 5.3, and discussion and the main 

conclusions are presented in Section 5.4. 

5.2 Materials and methods 

5.2.1 Surface soil moisture datasets 

Table 5.1 summarizes the main characteristics of the three SSM datasets (i.e. ASCAT, 

SMOSL3, and MERRA-Land) considered in this study. ASCAT and SMOSL3 were 

evaluated with respect to MERRA-Land during the period (05/2010–12/2012). 

 

Table 5 - 1 The main characteristics of the ASCAT, SMOS, and MERRA-Land SSM products. 

 

Soil 
moisture 
datasets 

Incidence 
angle (°) 

of remotely- 
sensed 

observations 

Data type 
and 

frequency 

Sampling 
depth and 

unit 

Temporal 
coverage 

Reference 

SMOS level 
3 

(SMOSL3) 
0–55 

Remotely 

sensed 

(L-band, 

passive) 

~ 0–3 cm 

(m
3
/m

3
) 

2010–

present 

Jacquette et 

al. (2010) 

ASCAT 55 

Remotely 

sensed 

(C-band, 

active) 

~ 0–1 cm 

(m
3
/m

3
) 

2006–

present 

Bartalis et 

al. (2007a) 

MERRA-
Land 

– Reanalysis 
0–2 cm 

(m
3
/m

3
) 

1980–

present 

 

Reichle et 

al. (2011) 

 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0010
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0055
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0080
http://www.sciencedirect.com/science/article/pii/S0034425714002612#t0005
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5.2.1.1 SMOSL3 

The SMOS mission was launched in November 2009 to monitor SSM at a depth of 

about 3 cm, with an accuracy of at least 0.04 m
3
/m

3
 at the global scale, and with a 3-day 

revisit at the equator (Kerr et al., 2001; Kerr et al., 2010). SMOS operates at L-band, with 

ascending overpasses at 06:00 Local Solar Time (LST) and descending overpasses at 18:00 

LST (Kerr et al., 2012). 

The SMOS level 3 (SMOSL3) SSM products, re-processed global maps of SSM at 

different temporal resolutions, 1-day, 3-day, 10-day, and monthly, have been recently released 

by the Centre Aval de Traitement des Données (CATDS; http://catds.ifremer.fr/). The daily 

SMOSL3 SSM products were used in this study. The main principle of the retrieval algorithm 

is the same as the one used by ESA for producing the operational level 2 SSM products (Kerr 

et al., 2012; Wigneron et al., 2007), that is, multi-angular observations are used to 

simultaneously retrieve SSM (directly quantified in m
3
/m

3
) and the vegetation optical depth at 

nadir (τ-NAD) based on a standard iterative minimization approach of a cost function 

(Wigneron et al., 2000). SMOSL3 ascending retrievals were selected in this study as they 

have generally been proven to be more accurate than SMOSL3 descending retrievals (Al-

Yaari et al., 2014; Alyaari et al., 2014). The SMOSL3 datasets provide flags that can be used 

to screen out questionable SSM retrievals (Jacquette et al., 2010; Kerr et al., 2013b), in 

particular because of radio-frequency interferences (see Section 5.2.2 for more details). 

It should be noted that, in the present study, we used the latest version available at 

CATDS. In the near future, new versions of the SMOSL3 products will be produced based on 

re-processing activities. 

http://catds.ifremer.fr/
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0035
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5.2.1.2 ASCAT 

ASCAT is a real-aperture radar instrument that operates at C-band (5.255 GHz) on-

board the Metop satellite since 2006, which crosses the equator at 21:30 LST for the 

ascending overpass and at 09:30 LST for the descending overpass. 

In this study, we used SSM products generated with the WARP5.5 software provided by TU-

Wien, which is the latest version of the algorithm used to produce this SSM dataset. As for 

SMOSL3, we only considered here morning overpasses, as previous findings indicated that 

the ascending ASCAT overpass retrievals are less accurate than the descending (i.e., morning) 

ones (e.g., Brocca et al., 2010). 

ASCAT SSM data are provided in terms of degree of saturation, that is, in relative 

units ranging between 0 (dry) and 100 (saturated). These extremes correspond, respectively, 

to the lowest and highest values of the observed backscatter over the first few centimeters of 

soil (< 3 cm). As the two other SSM products (SMOSL3 and MERRA-Land) used in this 

study are expressed in volumetric units, the ASCAT SSM index was converted to volumetric 

units (m
3
/m

3
).  

Multiplying the degree of saturation by the soil porosity (expressed in m
3
/m

3
) gives a 

direct estimate of the volumetric SSM content in m
3
/m

3
. The value of the soil porosity was 

estimated from global soil texture and hydraulic soil properties derived, as described 

by Balsamo et al. (2009), from the Food and Agriculture Organization digital (FAO) soil map 

(FAO, 2003; Su et al., 2011). The porosity map was provided at a resolution of 5′ × 5′ and it 

was interpolated to 25 km, which is consistent with the ASCAT soil moisture resolution. In 

the ASCAT product, several flags are provided along with the SSM values, including a noise 

value (ERR) quantifying the uncertainty associated with the retrieved SSM value and a flag 

associated with the wetland fraction or to the topographic complexity. Readers are directed 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0290
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to Wagner et al. (1999)and Naeimi et al. (2009) for more details on the TU-Wien algorithm 

and to Wagner et al. (2013) for a full review on the ASCAT SSM Product. 

5.2.1.3 MERRA-Land 

The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a 

global atmospheric reanalysis data product that integrates information from a broad variety of 

in situ and remote sensing observations of the atmosphere (Rienecker et al., 2011). MERRA-

Land is a supplemental data product of land surface hydrological fields (Reichle et al., 2011). 

The MERRA-Land product is a land-only, off-line, replay of a revised version of the MERRA 

land model component that benefits from (i) corrections to the precipitation forcing based on 

merging a gauge-based data product from the NOAA Climate Prediction Centre with 

MERRA precipitation and (ii) updated parameter values in the rainfall interception model. 

These changes correct known limitations in the MERRA surface meteorological forcing and 

yield improved estimates of land surface conditions (Reichle et al., 2011; Reichle, 2012). 

MERRA-Land SSM is associated with the 0–2 cm (topmost) soil layer and is available hourly 

at a spatial resolution of 2/3° longitude by 1/2° latitude. The MERRA-land SSM simulations 

at 6 am and 9 am were averaged and considered as a reference for both SMOS and ASCAT. 

We used the gridded SSM product expressed in volumetric units (m
3
/m

3
). 

5.2.2 Pre-processing 

Prior to the evaluation, SMOSL3 and ASCAT were filtered based on associated 

quality flags. Several values are associated with the ASCAT SSM retrievals, as described by 

(Naeimi et al., 2009): a noise error (ERR), which is based on Gaussian error propagation and 

which is related to the sensor characteristics and incidence angle uncertainty, an estimated 

standard deviation of the backscatter signal, etc. The ASCAT data were screened out to 

remove observations with a noise error (ERR) greater than 14% (Draper et al., 2012). The 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0210
http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0090
http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0205
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SMOSL3 product provides a Data Quality indeX (DQX) and a probability of radio frequency 

interference (RFI). The DQX values, which are provided in volumetric SSM units, quantify 

the error in the SSM retrieval and the brightness temperature measurement accuracy. RFI 

originates, for example, from satellite transmissions, aircraft communications, radar, or TV 

radio-links and contaminates the passive microwave emissions from Earth (Njoku et al., 2005; 

Oliva et al., 2012). Fig. 5.1 shows the global spatial pattern of the probability of RFI 

occurrence in the SMOS observations, presented as average of the probability of RFI 

occurrences during the period (2010–2012). In the present study, RFI effects were filtered out, 

using RFI flags provided in the SMOSL3 product. SMOSL3 SSM values were excluded if 

one of the following conditions was fulfilled (i) DQX > 0.06, (ii) DQX is equal to fill value, 

or (iii) percentage of radio frequency interference (RFI_Per) > 30%. 

 

 

 

Fig. 5 - 1 Three year average (2010–2012) of probability of radio frequency interference 

occurrences in the SMOS observations. 

 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0005
http://www.sciencedirect.com/science/article/pii/S0034425714002612#gr1
http://www.sciencedirect.com/science/article/pii/S0034425714002612#gr1
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ASCAT, SMOSL3, and the reference MERRA-Land dataset are distributed on 

different grids and formats. In this study, a nearest neighbor approach (e.g., Draper et al., 

2011; Rüdiger et al., 2009) was used to re-project all the datasets onto a regular 0.25° × 0.25° 

grid. Finally, all the three SSM datasets were screened, applying additional static masks, to 

remove grid cells with (i) steep mountainous terrain, based on a topographic complexity flag 

(provided with the ASCAT data) greater than 10% (Draper et al., 2012), (ii) open water, 

identified as having a wetland fraction (provided with the ASCAT data) greater than 5%, and 

(iii) frozen soil conditions, identified as having soil temperatures (top layer) below 276 K, 

obtained from MERRA-Land. 

It should be noted that all the statistical indicators were computed only when all the 

three SSM data were available from the different datasets and therefore the number of 

ASCAT and SMOSL3 SSM data used in the time series are identical, which is illustrated 

in Fig. 5.2. 

 
 

Fig. 5 - 2 Number of data used to compare the SMOSL3 and ASCAT datasets. 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0010


142 

 

5.2.3 Comparison using classical metrics 

Three classical metrics were calculated between pairs of the remotely sensed (SSMRS) 

and reference SSM products(SSMREF ): (i) Pearson correlation coefficient (R), (ii) bias, and 

(iii) unbiased root mean squared difference (ubRMSD). The equations for the calculation of 

the three indicators are given as follows (Albergel et al., 2012; Brocca et al., 2011; CECR, 

2012): 

𝑅 =  
∑ (SSMREF(i) − SSMREF)(SSMRS(i) − SSMRS)𝑛

𝑖=1

√ ∑ (SSMREF(i) − SSMREF)2 ∑ (SSMRS(i) − SSMRS)2𝑛
𝑖=1

𝑛
𝑖=1      

             5 − 1 

Bias =       (SSMRS − SSMREF)                                                                                5 − 2 

RMSD =  √(SSMRS − SSMREF)2                                                                            5 − 3 

unRMSD =   √RMSD2 − Bias2                                                                             5 − 4 

where n is the number of SSM data pairs, the overbar represents the mean operator, SSMREF is 

the reference SSM (MERRA-Land), and SSMRS is the satellite-based SSM product (SMOSL3 

or ASCAT). We use the term ubRMSD rather than ubRMSE (root mean squared error) since 

the MERRA-Land SSM values also contain errors and cannot be considered as the “true” 

SSM values (Entekhabi et al., 2010). 

All the above statistical indicators were computed for the original SSM values, 

expressed in volumetric units (m
3
/m

3
), and for SSM monthly anomalies for the correlation 

indicators only. The anomaly time-series are designed to assess the impact of seasonal effects 

that can unrealistically increase the degree of correlation between two time series (Scipal et 

al., 2008) and to explore the ability of the ASCAT/SMOSL3 SSM products to capture the 

short-term variability in the SSM time series. Following Albergel et al. (2009), the anomalies 
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SSManom(t) were calculated as the difference from the mean for a sliding window of 5 weeks, 

the difference was further scaled to the standard deviation: 

 

SSManom(t) =
SSMor(t) − SSMor(t − 17 ∶ t + 17)

σ[SSMor(t − 17: t + 17)]
                                         5 − 5 

 

where the overbar and σ symbols denote the temporal mean and standard deviation operators, 

respectively, SSMor(t)is the original remotely sensed/reference SSM value at time t; for a 

sliding window of 5 weeks corresponding to the time interval [t − 17 days, t + 17 days]. 

Global maps of R (original and monthly anomaly), ubRMSD, and bias were calculated 

for all common pixels on a daily basis between the reference and the SMOSL3 and ASCAT 

SSM time series. To investigate the effects of the vegetation and to simplify the interpretation 

of the correlation maps (original and anomalies), the metrics were also averaged according to 

the long-term mean leaf area index (LAI) values obtained from the Global Soil Wetness 

Project (Dirmeyer et al., 2006), displayed in Fig. 5.3. 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0015
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Fig. 5 - 3 Global distribution of the long term mean leaf area index (LAI) (Dirmeyer et al., 

2006). 

 

5.2.4 Comparison using Hovmöller diagrams (space–time distribution) 

A Hovmöller diagram (HD) is a two-dimensional plot that shows the time–latitude 

variations of a longitudinally averaged variable (Hovmöller, 1949). Here, we used the HD 

method to compare the spatio-temporal patterns of SSM for SMOS, ASCAT and MERRA-

Land at the global scale. The diagrams helped us to investigate the consistency and 

differences between the three SSM products. 

5.2.5 Comparison using triple collocation error model 

The triple collocation error model (TCE) is a powerful statistical tool to estimate the 

RMSD of a set of at least three linearly related data sources with uncorrelated 

errors. Stoffelen (1998) introduced the TCE model to evaluate wind vector datasets derived 

from a model, buoy measurements and scatterometer observations. Scipal et al. (2008) later 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0335
http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0335
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used the TCE to evaluate SSM datasets derived from models and satellites. Then, other 

authors (e.g., Dorigo et al., 2010; Draper et al., 2013; Loew & Schlenz, 2011; Miralles et al., 

2010; Parinussa et al., 2011a) also used the TCE method to characterize the errors of SSM 

derived from models and remote sensing. 

In this study, TCE was applied to the ASCAT, SMOS, and MERRA-Land SSM 

products, and specifically to their long-term anomalies, using 2010–2012 time series centered 

on its mean. The estimated SSM anomalies at time t from product i (denoted θi (t) in the 

following) are linked to the unknown true SSM θ(t) by a multiplicative bias term βi together 

with an error εi: 

𝛳1(𝑡) = β1.𝛳 (𝑡) + ɛ1                                                                                               5 − 6 

𝛳2(𝑡) = β2.𝛳 (𝑡) + ɛ2                                                                                               5 − 7 

𝛳3(𝑡) = β3.𝛳 (𝑡) + ɛ3                                                                                               5 − 8 

Note that since centered time series (anomaly from Eq. (5.5) without normalization) 

are used here, a constant bias term is not needed in Eqs. (5.6), (5.7) and (5.8). One of the 

datasets has to be defined as the reference dataset, namely MERRA-Land in this study, 

with β1 = 1. The other two datasets can then be calibrated using θi
*
 = θi/βi and εi

*
 = εi/βi in 

Eqs. (5.6), (5.7) and (5.8) to obtain: 

𝛳1
∗ = 𝛳 + ɛ1

∗                                                                                                                 5 − 9 

𝛳2
∗ = 𝛳 + ɛ2

∗                                                                                                              5 − 10 

𝛳3
∗ = 𝛳 + ɛ3

∗                                                                                                              5 − 11 

where θ2
*
and θ3

*
 are the rescaled measurements, and ε2

*
and ε3

*
 are the rescaled random errors 

(see, e.g. Draper et al., 2013). By pairwise subtraction of Eqs. (5.9), (5.10) and (5.11) and 

subsequent averaging over the cross-multiplied differences, we obtain: 

ɛ1
∗ =< (𝛳1

∗ − 𝛳2
∗) (𝛳1

∗ − 𝛳3
∗) >                                                                         5 − 12 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0020
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0035
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0040
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0035
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0040
http://www.sciencedirect.com/science/article/pii/S0034425714002612#bb0355
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0045
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0050
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0055
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ɛ2
∗ =< (𝛳1

∗ − 𝛳2
∗) (𝛳2

∗ − 𝛳3
∗) >                                                                         5 − 13 

ɛ3
∗ =< (𝛳1

∗ − 𝛳3
∗) (𝛳2

∗ − 𝛳3
∗) >                                                                         5 − 14 

where < > is the long-term mean, and the square root of the estimated εi
2*

 are the triple 

collocation errors estimates. 

The above derivation, and hence the validity of the TCE analysis, is based on the 

assumptions that the errors εi of the three datasets are uncorrelated, and that the three datasets 

can be linearly modeled as in Eqs. (5.6), (5.7) and (5.8) (Dorigo et al., 2010; Janssen et al., 

2007; Scipal et al., 2010). Because the three datasets are largely independent, TCE can be 

expected to perform well, but any residual error cross-correlations among the datasets would 

result in biased error estimates (Yilmaz & Crow, 2012). Finally, to obtain statistically reliable 

results we restricted our analysis to grid cells where at least 100 observations were available 

from each dataset. 

5.3 Results 

5.3.1 Spatial Analysis of SSM retrievals at the global scale 

Fig. 5.4 shows global maps of the time series correlation coefficient R for original 

SSM values and monthly anomalies (with only significant correlations, i.e., p < 0.05), the 

ubRMSD, and the bias (Section 5.2.3). In these maps, SMOSL3 (right panels) and ASCAT 

(left panels) were evaluated against the MERRA-Land reference dataset at each pixel over the 

05/2010–12/2012 period.  

In general, the metrics for SMOSL3 and ASCAT show a similar spatial 

correspondence with the MERRA-Land SSM over most of the globe. Fig. 5.4a and b shows 

that strong correlations (R is generally greater than ~ 0.5) between the global remotely sensed 

and the reference SSM products are found in the transition zones between wet and dry 

climates (e.g., Sahel), in the Great Plains (USA), western Europe, Australia, India, 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0035
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0040
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0040
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
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Kazakhstan, and south-eastern Brazil. This can be explained by the strong seasonal annual 

cycle of SSM in these regions (Koster et al., 2004b). 

Conversely, remotely sensed datasets exhibited weak correlations (R is generally less 

than 0.15) against the reference in arid regions due to the small range of natural variation in 

the SSM values. The correlations can even be negative between the ASCAT and MERRA-

Land data pairs in some arid sites (e.g., Saudi Arabia and North Africa; Fig. 5.4a). Low 

correlations for both SMOSL3 and ASCAT in high latitude regions can also be seen 

in Fig. 5.4a and b, where the R values drop below 0.20. 

 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
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Fig. 5 - 4 Pairwise comparison between the SMOSL3 (right panel) and the ASCAT (left 

panel) SSM datasets with respect to the reference MERRA-Land product in terms of the 

correlation coefficient (R) based on original SSM data (a and b), on SSM monthly anomalies 

(c and d), ubRMSD (m
3
/m

3
; e and f), and bias (m

3
/m

3
; g and h) during the 05/2010–12/2012 

period. Only significant correlations (p < 0.05) were plotted. 
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Time series correlation values (R) computed for seasonal anomalies, as described 

in Section 5.2.3, are shown in Fig. 5.4c and d. The global spatial patterns are again relatively 

similar for both SMOSL3 and ASCAT, with a slightly better ability of SMOSL3 to capture 

the short-term SSM variability of the reference than ASCAT in Central America and 

Australia, while ASCAT was found to be slightly better in Europe, India, and parts of China. 

For both datasets, rather high correlation values (R > 0.5) with the reference were found in 

eastern Australia, southern South Africa, Western Europe, and Central America, whereas low 

values were found in the northern Arabian Peninsula, North Africa, and tundra regions. 

Fig. 5.4e–h shows a similar distribution of ubRMSD and bias values for both 

SMOSL3 and ASCAT products. The ubRMSD values show a clear spatial distribution: low 

ubRMSD and bias values were found in deserts (e.g., the Sahara, the Arabian Peninsula, 

southern South Africa, and Central Australia), whereas high values of ubRMSD and bias were 

found for both instruments in boreal regions, locations near the Equator, and India (only for 

SMOSL3 because of RFIs). 

Due to the model-specific nature of the long-term mean values of soil moisture 

(Koster et al., 2009), large mean differences (biases) between the remotely sensed and the 

reference SSM products can be expected. Furthermore, bias may be caused by a wrong 

estimation of SSM when the satellite footprint includes small water bodies, as was found by 

(Bartsch et al., 2012; Gouttevin et al., 2013; Kerr et al., 2012). In Fig. 5.4g and h, relatively 

similar bias patterns can be noted for both SMOSL3 and ASCAT at global scale. However, 

the values of the biases are quite different: in comparison with the MERRA-Land SSM 

values, higher SSM values can be noted for ASCAT, especially in the boreal regions, whereas 

lower SSM values can be noted for SMOSL3. The positive bias, found mainly at high latitude 

regions, in the ASCAT retrievals which is associated to wetter months (i.e. summer periods) 

can be partially explained by errors in the FAO database used to convert the ASCAT degree 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0040
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
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of saturation to volumetric water content where values for a few pixels in the northern 

hemisphere exceed 0.6 m
3
/m

3
. 

Fig. 5.5a and b compares the areas where SMOSL3 correlates better with the reference 

than ASCAT (red), and where ASCAT correlates better with the reference than SMOSL3 

(green). Looking at original datasets, it can be seen that better correlations with MERRA-

Land were obtained with ASCAT over regions with high to moderate vegetation density and 

in regions where there is a strong seasonality in the SSM variability (e.g., India, Eastern 

Australia and the North-Central US, locations near the equator). On the other hand, SMOSL3 

shows better correlations with MERRA-Land than ASCAT in areas with low to moderate 

vegetation density (e.g., Western Australia, Sahara, and North America). The latter regions 

are known to be slightly contaminated by RFI effects (see Fig. 5.1).  

When looking at monthly anomalies (Fig. 5.5b), ASCAT shows higher correlations 

with the reference than with SMOSL3 over regions such as Central Europe, China and India, 

which are known to be highly contaminated by RFI effects (see Fig. 5.1). With the exception 

of these regions, SMOSL3 exhibits higher correlations with the reference over most of the 

grid cells. 

 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0005
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0025
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0005
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Fig. 5 - 5 Pairwise comparison between the ASCAT and SMOSL3 SSM datasets with respect 

to the reference SSM product in terms of correlations based on the original SSM data (a) or 

on SSM monthly anomalies (b) during the 05/2010–2012 period. The maps show the areas 

where either ASCAT (green) or SMOSL3 (red) correlates better with the reference. Pixels 

where the difference in the values of R is lower than 0.05 appear in blue. Only significant 

correlations (p < 0.05) were plotted and white areas indicate that the correlation is not 

significant. 
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5.3.2 Influence of leaf area index (LAI) 

To analyze the effect of vegetation, we computed the average correlation coefficient as 

a function of the global long term mean LAI, using values of the Global Soil Wetness Project 

(Dirmeyer et al., 2006). Note that the MERRA-Land simulations use the monthly LAI 

climatology from the Global Soil Wetness Project 2 (GSWP-2). The results for both the 

original SSM data (Fig. 5.6a) and the anomalies (Fig. 5.6b) show that the consistency of the 

remotely sensed SSM products with the reference (MERRA-Land) is strongly related to LAI. 

In Fig. 5.6a, it can be seen that the values of R increase almost linearly with LAI for ASCAT, 

from R ≈ 0.18 to R ≈ 0.55 as LAI increases from about 1 to 7. For SMOSL3, on the other 

hand, R values remain relatively constant as LAI increases, with values between ~ 0.32 and 

0.44. A decrease in R can be noted for SMOSL3 when LAI is higher than ~ 4, leading to 

higher correlation values to the reference with ASCAT, but this corresponds to a very low 

fraction of the total number of pixels considered here (less than 5%, after screening for 

uncertain retrievals). In contrast, SMOSL3 provides higher correlation values with the 

reference than ASCAT when LAI is lower than 1 (i.e. over sparse vegetation covers), which 

corresponds to almost 50% of the pixels considered in this global analysis, and similar 

correlation coefficients R are obtained for SMOSL3 and ASCAT for intermediate LAI values 

(1 ≤ LAI ≤ 3).  

In Fig. 5.6b, the same analysis is shown for monthly anomalies. As noted above, they 

exhibit lower correlations to the reference data (R ≈ 0.25) than the original data, for both 

SMOSL3 and ASCAT anomalies. The correlation differences between the two remotely 

sensed products are also much weaker than in Fig. 5.6a, even if SMOSL3/ASCAT remains 

better correlated to MERRA-Land for lower/higher values of the LAI. 

 

 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0030
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0030
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Fig. 5 - 6 Distribution of the correlation coefficient (R) between ASCAT (green), SMOSL3 

(red) and the reference product (MERRA-Land) for the original SSM data (a) and monthly 

anomalies (b) as a function of leaf area index (LAI) during the 05/2010–2012 period. 

Significant correlations (p < 0.05) were computed at each grid cell and then averaged by LAI 

intervals, which were extracted from the global distribution of LAI displayed in Fig. 5.3. The 

area coverage provides the cover fraction (%) over continental surfaces corresponding to 

each LAI interval. 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0015
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5.3.3 Hovmöller diagrams 

SSM strongly varies spatially and temporally, and this variability depends mainly on 

latitude and season (Schlosser & Milly, 2002). It is therefore important to analyze the 

capability of both ASCAT and SMOSL3 to detect time evolution and spatial patterns of SSM 

simultaneously. To this end, we used Hovmöller diagrams to illustrate the seasonal variations 

of SSM for SMOSL3 and ASCAT. The time evolution of the SSM for SMOSL3, ASCAT, 

and MERRA-Land, averaged along the longitude range by latitude bands, is displayed 

in Fig. 5.7. Note that, for SMOSL3, many regions of Europe and Russia are screened out due 

to RFI contaminations (see Fig. 5.1), and so the values in the Northern Hemisphere are 

dominated by estimates from North America. Note also that frozen conditions were excluded 

from the analysis (see Section 5.2.2), so there is no-data at latitudes above 55°N in the winter 

time. The main difference between the three HDs is a difference in mean, with higher SSMs 

according to MERRA-Land. This is consistent with the negative biases of the remotely sensed 

SSM products with respect to the MERRA-Land reference shown in Fig. 5.4g–h. 

Moreover, Fig. 5.7 reveals a common periodical behavior with time and latitude: the lowest 

values are comprised in two “parallel” sinusoidal bands around the equator reaching the 

minima around April. Hence, ASCAT and SMOSL3 capture the SSM seasonal variations in 

the inter-tropical area as simulated by MERRA-Land. The meridional shift of the Intertropical 

Convergence Zone (ITCZ) is well detected by all three datasets, but MERRA-Land presents 

higher seasonal cycle variations.  

The main differences in the SSM distribution are found in the Northern Hemisphere 

particularly related to the increase of SSM values during the summer period. Furthermore, 

very low SMOS SSM values (bright red color in Fig. 5.7c, i.e., SSM values close to 

0.05 m
3
/m

3
) can be noted north of ~ 50°N during the winter. It is likely these very low values 

can be explained by the effect of soil freezing: the SMOS sensor cannot distinguish between 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0035
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0005
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0035
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0020
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0035
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0035
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frozen and very dry soil conditions as the real part of the permittivity for both conditions are 

very close (values of permittivity ~ 5; Wigneron et al., 2007). So, it is likely that frozen soil 

conditions were not correctly flagged and excluded in the SMOSL3 products, and that the 

screening based on MERRA-Land soil temperatures may not be sufficient. For the same 

reasons, unrealistically drier winter-time SSM conditions were also retrieved by ASCAT in 

the same northern regions, albeit to a lower extent than for SMOS, with SSM values close to 

0.2 m
3
/m

3
. Conversely, MERRA-Land SSM includes both liquid and frozen water and 

therefore shows a more realistic increase in SSM during the winter. These results show that 

correctly detecting and screening frost and snow is still a big challenge. 
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Fig. 5 - 7 Time–latitude variations of original surface soil moisture data (m
3
/m

3
) for (a) 

ASCAT, (b) MERRA-L, (c) SMOSL3 and (d) number of data illustrated in Hovmöller 

diagrams. 

 

5.3.4 Triple collocation error model 

Global error maps for the remotely sensed SSM long-term anomalies (excluding the 

effect of the biases) are derived using the TCE method over the 2010–2012 period. Fig. 5.8a 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0040
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and b illustrates the TCE errors (i.e. the square-root of the values obtained from 

Eqs. (5.13) and (5.14)) of SMOSL3 and ASCAT. 

In general, the spatial patterns of the TCE errors obtained with ASCAT and SMOS are 

similar with relatively low TCE errors, with a mean global error of 0.014 m
3
/m

3
 for SMOSL3, 

and 0.015 m
3
/m

3
 for ASCAT. Note that the mean global error found for SMOSL3 in our study 

is much lower than the one found by Leroux et al. (2011) (~ 0.06 m
3
/m

3
). The higher mean 

value obtained by Leroux et al. may be explained by the use of only one year (2010), while 

we used 3 years in the present analysis (2010–2012). Also, Leroux et al. (2011) did not 

exclude SSM data measured during the commissioning phase which might have increased the 

error for the SMOS dataset. Moreover, the way to handle data filtering using flags such as the 

data quality index and RFI percentage may be different in both studies. 

As shown in Fig. 5.8a and b, the error estimates for both products are lowest in arid 

regions (e.g., Arabian Peninsula, Central Australia, and Egypt) due to low amounts of 

precipitation received leading to a low temporal variability of SSM in these regions. Higher 

TCE errors were found for both SMOSL3 and ASCAT over India and over locations near the 

Equator (e.g., South Sudan, Zambia) where MERRA-Land is much less reliable due to the 

paucity of precipitation gauges, particularly over most of the African continent.  

Relatively high errors were obtained for ASCAT in some arid regions (e.g., Algeria, 

Libya, and Iran) which is a well-known phenomenon already noted in the previous Sections 

(5.3.1 and 5.3.2). Fig. 5.9 shows the areas where SMOSL3 provided lower errors than 

ASCAT (red), where ASCAT provided lower errors than SMOSL3 (green). Note that the 

absolute magnitude of the estimated error depends on the TCE reference. In general, it can be 

seen that lowest errors were obtained with ASCAT over regions with high to moderate 

vegetation density, and in regions where there is a strong seasonality in the SSM variability 

(e.g., India, in parts of Amazonia, Central Europe, Eastern Australia and the North-Eastern 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0065
http://www.sciencedirect.com/science/article/pii/S0034425714002612#fo0070
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0040
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0060
http://www.sciencedirect.com/science/article/pii/S0034425714002612#s0065
http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0045
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USA). On the other hand lower errors were obtained with SMOSL3 in areas with low to 

moderate vegetation density (e.g., Western Australia, Sahara, and western US, Central Asia), 

confirming the results shown in the previous Section about the sensitivity to the vegetation 

effects. 

 

 
 

Fig. 5 - 8 Spatial TCE errors of (a) ASCAT and (b) SMOSL3 SSM estimates expressed in 

volumetric water content. White areas indicate areas for which less than 100 common 

observations were available. 
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Fig. 5 - 9 The areas in which either ASCAT (green) or SMOSL3 (red) shows the smallest TCE 

error value. Pixels where the difference in TCE error is less than 0.005 m
3
/m

3
 appear in blue. 

White areas indicate areas for which less than 100 common observations were available. 

 

 

5.4 Discussion and conclusions 

5.4.1 Summary of the results 

This study investigated the consistency of two microwave-based SSM products with 

respect to a reference SSM product, namely the MERRA-Land SSM product, derived from 

the MERRA reanalysis, for the period 05/2010–12/2012 at the global scale. The two remote 

sensing products are (i) the SMOSL3 SSM product, which is a microwave-based product 

derived from L-band passive brightness temperature measurements developed and supported 

by the CATDS, and (ii) the ASCAT SSM product, which is a microwave-based product 
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derived from C-band active backscatter measurements, developed and supported by TU-

Wien. 

The analysis of the original data shows, in general, a good correspondence between 

the SMOSL3 and ASCAT derived SSM products with the MERRA-Land reference. For 

instance, SMOSL3 and ASCAT successfully captured the spatio-temporal dynamics of the 

MERRA-Land SSM product, as seen in the correlation analyses, in the transition zones 

between wet and dry climates (e.g., Great Plains of North America, Sahel), Eastern Australia, 

and South-eastern regions of Brazil. It is worth noting that the regions of good agreement 

between SMOSL3, ASCAT, and MERRA-Land are also regions of strong coupling between 

soil moisture and precipitation as demonstrated by Koster et al. (2004b). 

SMOSL3 and ASCAT exhibited weak correlations with the MERRA-Land reference 

data in tundra and arid regions (e.g., Sahara, Arabian Peninsula, and Central Australia). 

ASCAT even exhibited negative correlations over some of the dry deserts (e.g., Sahara). 

These low correlations may be explained by the small range of variation in the SSM values in 

these dry regions which corresponds roughly to the remotely sensed retrieval accuracy (~ 0.04 

m
3
/m

3
, Kerr et al., 2001). Issues with the ASCAT SSM retrievals in dry regions may be 

explained by (i) systematic errors in the retrieval algorithm due to different scattering 

mechanisms in dry soils (Wagner et al., 2013) and (ii) changes in small-scale surface 

roughness, produced by wind-blown sand (Frison & Mougin, 1996). Anomaly time series 

correlations show, in general, similar spatial patterns compared to the correlations found using 

original datasets, but with lower R values, especially in the transition zones. 

The global scale analysis of the bias and ubRMSD also confirmed these results. 

However, opposite patterns were generally obtained in terms of bias: ASCAT is generally 

wetter than MERRA-Land (positive bias), while SMOSL3 is generally drier than MERRA-

Land (negative bias). 
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Additional insights were provided by the Hovmöller diagrams, which visualize the 

time changes in SSM as a function of latitude. It is found that even though strong correlations 

are found between all three products at global scale, the spatio-temporal patterns shown in the 

HD may be quite different for SMOSL3, ASCAT and MERRA-Land in some latitudinal 

bands. For instance, SMOSL3 presents consistently dry SSM conditions (less 

than ~ 0.10 m
3
/m

3
) at mid latitudes (between 10°N and 30°N). This could be partly explained 

by the impact of RFI as high RFI values increase the SMOS observed brightness temperatures 

(TB) resulting in lower SSM retrievals (Oliva et al., 2012). Wigneron et al. (2012) have 

interpreted the bias as an effect of the underestimation of the default contribution to TB of the 

forested areas in mixed pixels. 

Finally, results from the TCE method generally confirmed the above results and the 

spatial error patterns were found to be consistent with known performance issues of SMOS 

and ASCAT (Leroux et al., 2013a). In particular, larger errors were found for SMOSL3 in the 

presence of moderate to dense vegetation in tropical and temperate regions and in regions 

known to be highly contaminated by RFI effects (Western Europe, India, Southern Asia). 

Higher errors were found for ASCAT over arid regions (North Africa, Central Australia, and 

Central Asia). Our findings are generally in agreement with the results obtained by previous 

studies analyzing spatial errors of ASCAT over 2007–2008 (e.g., Dorigo et al., 2010) and 

SMOS over 2010 (Leroux et al., 2011), using products based on earlier versions of the 

retrieval algorithms. 

A more in-depth analysis, using LAI as a parameter to quantify the vegetation effects, 

revealed higher R values for SMOSL3 than for ASCAT when LAI is less than 1 (which 

corresponds to almost 50% of the pixels considered in this study), similar R values for both 

products for intermediate LAI values between 1 and 3, and higher R values for ASCAT than 

for SMOS when LAI exceeds 3. This implies that vegetation plays a key role in the 
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performance of the SMOSL3 and ASCAT SSM products, and that the two products have 

different sensitivities to vegetation. Generally, SMOS is more efficient at monitoring SSM 

than ASCAT over sparse vegetation, whereas ASCAT is more efficient over relatively dense 

vegetation (LAI > 3). 

5.4.2 Discussion 

These results may appear as surprising because microwave sensors should be more 

efficient to sense through moderate vegetation at L-band than at C-band (Al-Yaari et al., 

2014): with increasing frequency (i) scattering and attenuation effects by vegetation elements 

(leaves, stems, trunks, branches, fruits, etc.) increase and (ii) the sampling depth in soil 

decreases. However, in this study, SMOS and ASCAT differ not only in terms of frequency 

but also in terms of microwave technology: SMOS is a radiometer (i.e. a passive microwave 

system), while ASCAT is a scatterometer (i.e. an active microwave system). Previous studies 

comparing SSM retrievals from radiometer and scatterometer systems (Brocca et al., 2011; 

Rüdiger et al., 2009) also found that SSM products retrieved from scatterometer data were 

less impacted by vegetation than those retrieved from radiometers data. 

There are different ways of interpreting these results. First, the good performances of 

ASCAT over vegetation canopies could be due to higher-order surface-vegetation interaction 

effects (Crow et al., 2010), such as double bounce reflection (Karam et al., 1995) that may 

increase the sensitivity of active systems to SSM in comparison to passive systems. These 

higher-order effects are often neglected in the current models used for SSM retrievals from 

both active and passive systems. However, these interaction effects may become extremely 

important under some conditions and may, to a large extent, explain the sensitivity of ASCAT 

to soil moisture over vegetated regions even at high incidence angles (Crow et al., 2010). 
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Second, the scatterometer systems have been also found to be very sensitive to the 

seasonal vegetation dynamics. For instance, early studies which investigated signatures from 

ERS backscatter coefficients based on averaged observations on a monthly basis have shown 

that the time variations in the measured backscatter coefficient were in good agreement with 

the vegetation dynamics as monitored by optical vegetation indices (Frison & Mougin, 1996). 

It should be noted that, for some specific conditions, the increase in vegetation effects and the 

increase in SSM both lead to an increase in the backscatter coefficient (Wigneron et al., 

1999a; Wigneron et al., 1999b), which may make the decoupling of the two effects difficult 

using an active system such as ASCAT. So, it is difficult to appreciate whether ASCAT is 

really monitoring the time variations in SSM or in the vegetation in regions where there is a 

natural high correlation between the vegetation dynamics and the increase in the SSM values. 

The hypothesis that ASCAT may have difficulties in decoupling vegetation and SSM effects 

at the seasonal scale may be used to interpret the fact that the performances of ASCAT 

become closer to those of SMOSL3 for LAI > 3 when anomalies (taking off seasonal effects) 

were used (Fig. 5.6a and b). 

However, many results can be raised to contradict this hypothesis. For instance, in 

many climate regions (Mediterranean Climate regions for instance) where soil moisture and 

vegetation may be out of phase, ASCAT performed quite well. Moreover, the increase in 

vegetation density often leads to an increase in backscatter, but the opposite may also happen, 

depending on the soil moisture conditions. Eventually, considering anomalies, the 

performances of SMOS and ASCAT were very close (ASCAT slightly better) in terms of 

correlation values for LAI > 1. This latter result confirms the very good ability of active 

systems such as ASCAT in monitoring SSM over well-developed vegetation. 

It is also important to keep in mind that MERRA-Land, although found to be very 

reliable in several instances (Albergel et al., 2013b; Yi et al., 2011), cannot be considered to 

http://www.sciencedirect.com/science/article/pii/S0034425714002612#f0030


164 

 

be “ground truth” (Albergel et al., 2013a). Consequently, the interpretation of the results 

depends on the accuracy of the MERRA-Land product itself. The skill of MERRA-Land soil 

moisture strongly depends on the accuracy of the precipitation forcing, which is derived by 

merging the MERRA reanalysis precipitation with measurements from a global network of 

gauges. The density of the gauge network varies tremendously, with good coverage in North 

America, Europe and many parts of Asia and South America. However, the gauge density is 

very sparse in Africa and at high latitudes. In these regions in particular, a lack of consistency 

between the remote sensing products and MERRA-Land SSM does not necessarily imply 

poor performance by the remote sensing estimates. Other factors that determine the skill of 

MERRA-Land soil moisture include the radiation forcing as well as the land model physics 

and associated model parameters, whose quality is similarly variable across the globe. 

Looking ahead, improvements in the retrieval algorithms as well as in the LSM data 

can be expected. For the SMOSL3 product, this includes enhancements especially in terms of 

RFI filtering and dry bias correction. For ASCAT, the issues found over arid regions are 

currently under investigation. Finally, the next version of the MERRA reanalysis is currently 

in production and features improved precipitation forcing, the single most critical input to 

SSM estimates from models. 

The results of the present study revealed that both the SMOSL3 and the ASCAT SSM 

products are largely consistent with the model-based SSM estimates from MERRA-Land, and 

that the two remote sensing products complement each other. Vegetation density and RFI 

contaminations of SMOSL3 were found to be the key factors in the interpretation of the 

consistency between the two remotely sensed products (SMOSL3 and ASCAT) with 

MERRA-Land. The potential synergy between the passive and active microwave systems at 

global scale is very promising for the development of improved, long-term SSM time series at 
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global scale, such as those pursued by the European Space Agency's Climate Change 

Initiative. 
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Chapter VI 
 

6.    Testing simple regression equations to 
derive long-term global soil moisture 

datasets from satellite-based brightness 
temperature observations3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3
 This chapter has been partially published as: Amen Al-Yaari, Jean-Pierre Wigneron, Agnes Ducharne, Yann H. 

Kerr, Patricia de Rosnay, Richard de Jeu, Ajit Govind, Ahmad Al Bitar, Clement Albergel, Joaquin Muñoz-

Sabater, Philippe Richaume, Arnaud Mialon: Merging two passive microwave remote sensing (smos and 

amsr_e) datasets to produce a long term record of soil moisture. Geoscience and Remote Sensing Symposium 

(IGARSS), 2014 IEEE International 13-18 July 2014. The whole chapter is to be submitted. 



167 

 

6.1 Introduction 

 

Soil moisture (SM) is one of the key variables in the environment and the climate 

system as it influences the exchange of heat and water between the land surface and 

atmospheric processes (Hupet & Vanclooster, 2002; Western et al., 2004; Wigneron et al., 

1999a). In 2008, SM was recognized as an Essential Climate Variable (ECV) which is 

considered essential for IPCC (Intergovernmental Panel on Climate Change) requirements 

(Wagner et al., 2012). Complete and consistent record of SM, as an ECV, is required for 

hydrological applications, flood prediction, drought monitoring, climate forecasts, etc. 

Active and passive microwave sensors offer the opportunity to retrieve surface SM 

(SSM) information from their surface backscatter and brightness temperatures (TB) signals, 

respectively, which are mainly determined by the soil dielectric constant (Njoku et al., 2002; 

Ulaby et al., 1996). Active and passive microwave remote sensing particularly at low 

frequencies have been shown to provide useful SSM retrievals (Bartalis et al., 2007a; Kerr et 

al., 2001; Njoku et al., 2003) with large spatial coverage and high temporal resolution and, 

hence, to be suitable for SSM monitoring at the global scale (Griend & Owe, 1994; Owe et 

al., 2001; Wigneron et al., 1995; Wigneron et al., 1998; Wigneron et al., 2000). Nevertheless, 

these microwave sensors provide individually inconsistent SSM datasets. Therefore, the 

ESA's Programme on Global Monitoring of ECV known as the Climate Change Initiative 

(CCI), and the European Space Agency's Water Cycle Multi-mission Observation Strategy 

(WACMOS) (Su et al., 2010), merged the different observations acquired by several 

microwave sensors in an attempt to produce the most complete and consistent long-term time 

series of SSM (1978-2010) (http://www.esa-cci.org/)(Liu et al., 2012). These include the 

Scanning Multichannel Microwave Radiometer (SMMR; 6.6, 10.7 , 18.0 21, and 37 GHz 

channels; (Wang, 1985)), the Special Sensor Microwave Imager (SSM/I; 19.4, 22.2, 37.0, and 

85.0 GHz channels) of the Defense Meteorological Satellite Program, the Advanced 
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Microwave Scanning Radiometer on Earth Observing System (AMSR-E; from 6.9 to 89.0 

GHz; (Njoku & Li, 1999)), and the Advanced Scatterometer (ASCAT) data (Liu et al., 2011). 

This product has been available since June 2012 and has been of interest for researchers to 

study the long-term trends of SSM (Albergel et al., 2013b; Seneviratne et al., 2010).  

The second phase of the upcoming CCI project aims at including a new innovation in 

space technology, namely the SMOS (Soil Moisture and Ocean Salinity) SSM datasets, in the 

long term CCI SSM datasets. The SMOS satellite, launched in November 2009, is the first-

ever satellite specifically dedicated to monitoring SSM with an accuracy of 0.04 m
3
/m

3 
from 

space over the continental surfaces (Kerr et al., 2010; Kerr et al., 2012). SMOS at L-band has 

been providing multi-angular microwave TB observations (Kerr et al., 2012) since 2010. 

Consequently, there is no prior record of SSM from SMOS. SSM is retrieved from the SMOS  

TB observations using several approaches such as the forward model inversion, neural 

networks, and statistical regressions, and readers are directed to (Wigneron et al., 2003) for a 

review. The operational retrieval method (i.e. forward model inversion) is time consuming 

and requires several auxiliary datasets (e.g., the land cover, soil texture, etc.). Besides, 

Wigneron et al. (2004) and Saleh et al. (2006) have developed and evaluated semi-empirical 

regression equations between the SSM and microwave reflectivity (i.e. one minus emissivity) 

based on the radiative transfer model (τ-ω model) (Mo et al., 1982; Wigneron et al., 1995), 

which simulates the L-band TB from soil underlying a vegetation canopy. More specifically, 

regression equations using multiple configurations of bipolarized and multi-angular 

microwave TB observations were shown to be efficient for retrieving SSM (Albergel et al., 

2011; Calvet et al., 2011; Parrens et al., 2012; Saleh et al., 2006). These regression methods 

have been used in several studies based on in situ, airborne, or space-borne (SMOS) 

observations (Calvet et al., 2011; Parrens et al., 2012; Pellarin et al., 2003). For instance, 

Albergel et al. (2011) applied these methods successfully to SMOS data over some sites in 
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France, and the retrieval method was extended over the whole of France by Parrens et al. 

(2012).  

To date, to our knowledge, no study has been performed to assess the potential of the 

statistical methods to retrieve SSM at the global scale. The objectives of this study are 

twofold (i) deriving a merged SSM product based on the AMSR-E TB observations over 

2003-2009 which is coherent with the SMOS SSM products (2010-2014) in terms of absolute 

values and time variations and (ii) evaluating the quality of this merged product with respect 

to several global scale SSM. 

 The knowledge gained from this study is to be used to help the preparation of the 

upcoming CCI phase 2 SSM programme to provide guidelines for a seamless SSM record. 

6.2 Materials and methods 

6.2.1 Datasets  

6.2.1.1 AMSR-E Level 3 brightness temperatures  

The AMSR-E sensor measures dual-polarized TB at C-band (6.925 GHz) vertically 

and horizontally with a spatial resolution of ~ 56 km. In this study, the level 3 global daily 

gridded TB product, projected on a global (Equal Area Scalable Earth) EASE grid 25 km, 

provided by the National Snow and Ice Data Center (NSIDC) was used. C-band was preferred 

in our study for retrieving SSM, as it is more sensitive to SSM than higher frequency bands, 

and the closest to L-band.   

Night-time surface temperatures are more stable than day-time, hence the vegetation 

temperature is closer to soil temperature as the temperature gradients between them is not 

strong (Kerr & Njoku, 1990), and therefore we limited our study to night-time data 

(corresponding to AMSR-E descending overpass-time 0130 hour local time)(e.g., Al-Yaari et 

al., 2014).  
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6.2.1.2 SMOS level 3 soil moisture products  

The SMOS satellite provides SSM products with global coverage and a 3-day revisit 

at the equator with ascending and descending orbits at 0600 and 1800 hours local time, 

respectively, with a spatial resolution of 35–50 km (Kerr et al., 2010).  

CATDS (Centre Aval de Traitement des Données) recently provided daily re-

processed global gridded SSM products, projected on a global EASE grid 25 km, namely the 

SMOS level 3 (SMOSL3) products. SMOSL3 has an enhanced accuracy in the SSM data by 

using several revisits simultaneously and multi-orbit retrievals (Jacquette et al., 2010). 

SMOSL3 product is provided as volumetric soil water content (m
3
/m

3
) and can be freely 

obtained from the CATDS website (http://catds.fr). 

SMOSL3 retrievals at dawn, corresponding to SMOS descending overpass-time 0600 

hour local time, were selected in this study (Al-Yaari et al., 2014) for better consistency with 

AMSR-E night-time data. 

6.2.1.3 ECMWF Soil temperature  

Given the unavailability of real physical surface soil temperature through direct 

ground measurement at the global scale, we used soil temperature estimates produced by the 

European Center for Medium range Weather Forecasting (ECMWF). This surface soil 

temperature product (0-7cm) was re-projected and resampled to the same projection and 

spatial resolution of both SMOSL3 and AMSR-E SSM and TB products, respectively. 

ECMWF Soil temperature is available for the whole period concerned in this study (2003-

2011). 

6.2.1.4 MODIS NDVI 

The NDVI (Normalized Difference Vegetation Index) products were obtained from 

MODIS (Moderate-resolution Imaging Spectroradiometer), which is an EOS sensor mounted 

http://catds.fr/
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on the TERRA satellite launched (King & Greenstone, 1999) by NASA in 1999. The NDVI is 

produced globally over land at 1 km resolution and for 16-day composite periods. The NDVI 

was found to be sensitive to (a good estimator of) Leaf Area Index (LAI) (Chen & Cihlar, 

1996; Colombo et al., 2003; Fan et al., 2009; Law & Waring, 1994; Potithep et al., 2010), 

which was shown to have a strong control on the skill of SSM retrieved by passive sensors 

(Al-Yaari et al., 2014).  

6.2.2 Methods 

In this study, we used simplified statistical regressions, which were analytically 

derived from the L-Band Emission of the Biosphere model (L-MEB, described in detail in 

Wigneron et al. (2007)), based on bi-polarization TB datasets (Saleh et al., 2006; Wigneron et 

al., 2004). More specifically, these methods have been numerically derived from the 

equations of the τ-ɷ model (a zero-order solution of the radiative transfer equations), which is 

a simple formulation derived from the general radiative transfer equation for non-scattering 

homogeneous media, assuming that the value of the single scattering albedo is negligible and 

that the values of optical depth are the same for both polarizations. So these methods are 

based on physical equations.  

The equation developed by Saleh et al. (2006), which was also applied by (Albergel et 

al., 2011; Calvet et al., 2011) to bi-polarization TB observations made at an incidence angle , 

can be written as: 

ln(𝑆𝑆𝑀) = 𝑏2 ln(Γ𝐻(𝜃)) + 𝑏1 ln(Γ𝑉(𝜃)) + 𝑏0(𝜃)                                             6 − 1 

where  () is the surface reflectivity at polarization V or H, defined as: 

 

Γ𝑃(𝜃) = 1 −
𝑇𝐵𝑃(𝜃)

𝑇𝐺
                                                                                                  6 − 2 
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where TBP and TG are the brightness temperature at polarization p (H or V) and surface soil 

temperature, respectively. In this study, TG is obtained from ECMWF. 

Mattar et al. (2012) have shown that vegetation effects may be accounted for by 

adding vegetation information such as the NDVI to the regression equation, which may in 

turn enhance the regressions analysis. According to Mattar et al. (2012), the regression 

equation can be rewritten as: 

ln(𝑆𝑆𝑀) = 𝑏3(𝑁𝐷𝑉𝐼) + 𝑏2 ln(Γ𝐻(𝜃)) + 𝑏1 ln(Γ𝑉(𝜃)) + 𝑏0(𝜃)               6 − 3 

The coefficients b0, b1, b2, and b3 of the regression Eqs. (6.1) and (6.3) are assumed to 

be constant in time and have to be calibrated over each pixel. 

6.2.2.1 Regression calibration 

The coefficients b0, b1, b2, and b3 of the regression Eqs. (6.1) and (6.3) are calibrated 

using the AMSR-E TBP at C-band (6.9 GHz) in both H and V polarizations. The calibration 

was made over the whole time period during which both AMSR-E TB observation and 

SMOSL3 products are simultaneously available (namely Jun. 2010 - Sept. 2011). In both 

equations (6.1 & 6.3), as a reference value for SSM, we used the most recent available re-

processed SMOSL3 SSM products. The NDVI values used in Eq. (6.3) were taken from 

MODIS products. This bi-polarization approach was used here as AMSR-E provides TB 

measurements at only one angle 55° and two polarizations (H & V). In both equations (6.1 & 

6.3), the regression coefficients were computed for each grid cell. They implicitly depend on 

the surface characteristics in terms of soil texture and surface roughness, vegetation types, 

topographic features, etc. (Saleh et al., 2006). Fig. 6.1 shows a flowchart representation of the 

regression calibration method (1&2), soil moisture retrieval (3), and the availability of the 

datasets used in time (bottom panel). 

 



173 

 

 

 

Fig. 6 - 1 Flow chart of the regression calibration method using Eq. (6.1) (1) and Eq. (6.3) 

(2) and soil moisture retrievals using the computed regression coefficients (3). The bottom 

panel shows the dataset availability in time. 

 

6.2.2.2 Producing SSM data 

The computed regression coefficients can then be used to derive a long SSM time 

series in all the pixels for the (2003-2009) period (see Fig. 6.1) using Eqs. (6.1) and (6.3). In 

this period, TB measurements are obtained from AMSR-E. During the calibration period, soil 

temperatures are obtained from ECMWF, NDVI are obtained from MODIS, and the 
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calibrated regression coefficients and thus all the parameters in the regression Eqs. (6.1) and 

(6.3) are known except the SSM which is our target to retrieve. 

6.3 Results and discussion 

6.3.1 Regression calibration 

Using the above defined methodology, the regression coefficients b0, b1, and b2 in Eq. 

(6.1) were derived from the AMSR-E V and H polarized TB, using the SMOSL3 SSM 

products as a reference. The corresponding calibration parameters b2, b1 (corresponding to H 

& V polarized TB, respectively), and b0 (intercept coefficient) are displayed in Fig. 6.2, which 

shows, in general, that the spatial patterns of the coefficients are in agreement with land cover 

type. For instance, the intercept b0 and the b1 coefficient are somewhat similar with high 

values over regions with moderate vegetation (e.g., North Western Australia and equatorial 

regions) and low values over dry regions (e.g., Middle East).  

Also, a difference in the spatial pattern of values between V (b1) and H (b2) 

polarizations can be seen in Figs. 6.2 (top and middle panel), especially over transition zones 

between wet and dry climates, including India. Over tundra areas, also, the coefficient b1 for 

V polarization are low, whereas b2 is high for H polarization. Looking at these two coefficient 

maps, a combination of low (high) coefficient values for V polarization and high (low) 

coefficient values for H polarization was selected to give the best predictions of SSM. The 

spatial patterns of the intercept (b0) are relatively similar to the ones of b1. 
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Fig. 6 - 2 Regression coefficients of AMSR-E brightness temperature vs. SMOSL3 SSM in 

2010-2011 with Eq. (6.1). b0 (bottom panel): intercept, b1 (middle panel): vertical 

polarization, and b2 (top panel): horizontal polarization. White areas over land indicate 

areas with dense vegetation, strong topography, or wetlands.  
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A similar regression method using in addition the NDVI vegetation index (Eq. (6.3)), 

as proposed by Mattar et al. (2012), to account for vegetation effects was also investigated. 

The four calibration parameters b3 (corresponding to the NDVI), b2 and b1 (corresponding to 

H & V polarized TB, respectively), and b0 (intercept coefficient) are displayed in Fig. 6.3. It 

shows that the spatial patterns of the coefficients generally agree with the spatial patterns of 

the coefficients computed without NDVI. The NDVI coefficient (b3) has distinguished spatial 

patterns with low values over moderate vegetation (e.g., the Sahel, India, West USA, etc.), 

whereas high values are found over arid regions (e.g., extreme South Africa, Central and 

Western Australia, the western United States, etc.).  
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Fig. 6 - 3 Regression coefficients of the AMSR-E TB vs. SMOSL3 SSM during the 2010-2011 period with Eq. (6.3). b0: intercept, b1: vertical 

polarization, b2: horizontal polarization, and b3: NDVI. White areas over land indicate areas with dense vegetation, strong topography, and 

wetlands.
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6.3.2 Regression’s quality and new AMSR-E SSM products 

The three regression coefficients from Eq. (6.1) obtained during the calibration period 

(2010-2011) were then used in the same empirical relationship equation (Eq. 6.1) to estimate 

SSM from AMSR-E TB data for the same period of calibration. Note that this step does not 

correspond to a validation exercise, as the comparison between the retrieved SSM values and 

the reference SSM values (SMOSL3) was made over the period of calibration (2010 - 2011). 

So, our objective here was merely to check whether realistic and coherent retrieved SSM 

values could be produced from the regression Eq. (6.1). The accuracy of the estimated SSM 

based on the bi-polarization approach (referred here to as AMSR-reg), in terms of the Root 

Mean Square Difference (RMSD; bottom panel) and correlation coefficient (R; top panel) 

values against SMOSL3, is shown in Fig. 6.4. 

 In Fig. 6.4 (b), the spatial patterns of the RMSD are similar to the vegetation 

distribution with a global mean of 0.05 and high RMSD (~ 0.1) over regions with high to 

moderate vegetation to low RMSD (< 0.04) over arid regions. In Fig. 6.4 (top panel), only the 

significant correlations between the reference and the retrieved SSM estimate obtained from 

Eq. (6.1) (p-value<0.05) are plotted. The reference generally correlates well with the AMSR-

reg over most of the globe with a global mean of 0.60 with the highest R values (R > 0.75) 

over Australia, the United States, West Africa, etc.  

Similarly, the four regression coefficients from Eq. (6.3) obtained during the 

calibration period (2010-2011) were then used in the same empirical relationship equation 

(Eq. 6.3) to estimate SSM from AMSR-E TB data for the same period of calibration. The 

accuracy of the estimated SSM based on the bi-polarization approach with the addition of 

NDVI vegetation index Eq. (6.3), in terms of the RMSD (bottom panel) and the correlation 

coefficient (top panel) values is illustrated in Figs. 6.5. It can be seen that the RMSD values 
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are higher than the ones computed with Eq. (6.1) without the inclusion of NDVI with a global 

mean of 0.10. 

 
 

Fig. 6 - 4 Regression statistics of AMSR-reg vs. SMOSL3 SSM in 2010-2011 with Eq. (6.1): a) 

R (a) and b) RMSD (m
3
/m

3
) (b). White areas over land indicate areas with dense vegetation, 

strong topography, and wetlands. 

 

 

This can be noted particularly over the extreme South Africa and the western and 

central of Australia, western USA, Central Asia, and the transition zones. These are areas 
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where the NDVI coefficient values are high and may explain these high RMSD values. 

Consequently, this means that the addition of NDVI leads to high values of SSM over these 

regions, hence, does not improve the SSM predictions in terms of absolute values. The spatial 

patterns of correlations are similar with Fig. 6.4 with a global mean of 0.57. 

 

Fig. 6 - 5 Regression statistics of AMSR-reg with inclusion of NDVI vs. SMOSL3 SSM in 

2010-2011 with Eq. (6.3): a) R (top panel) and b) RMSD (bottom panel, m
3
/m

3
). Only 

significant correlations (p-value < 0.05) are presented. White areas over land indicate areas 

with dense vegetation, strong topography, and wetlands. 

 

Fig. 6.6 shows the areas where the correlation between the regressed data without 

NDVI and the reference SMOSL3 SSM products (in red) are higher than the correlation 
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between the regressed data with NDVI and the reference SMOSL3 SSM products (in blue), 

and the areas where the difference is lower than 0.05 (in green). In general, the green color is 

prevalent, several red points can be noted, and there is almost no blue color. This tells that the 

addition of NDVI did not improve the regression in terms of temporal dynamics, thus, neither 

in RMSD (m
3
/m

3
) nor in the correlation values. These results are consistent with a recent 

study (Miernecki et al., 2014), which concluded that including the NDVI variable in the 

regressions provided lower performances. Consequently, for retrieving the long record 2003-

2009 SSM, the regression without the inclusion of the NDVI values is recommended to 

extend back the SMOSL3 SSM for the period 2003-2009. 

 

 

Fig. 6 - 6 Pairwise comparison between the AMSR-reg with NDVI and AMSR-reg without 

NDVI SSM products with respect to the reference SMOSL3 SSM product in terms of 

correlations based on the original SSM data during the 2010 – 2011 period. The map shows 

the areas where either AMSR-reg without NDVI (red) or AMSR-reg with NDVI (blue) 

correlates better with the reference. Pixels where the AMSR-reg with NDVI and AMSR-reg 

without NDVI have similar performances (differences in the values of R lower than 0.05) are 

shown in green. Only significant correlations (p-value < 0.05) are presented. White areas 

over land indicate areas with dense vegetation, strong topography, and wetlands. 
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6.3.3 Product comparison with original AMSR-E SSM product 

A comparison between the SSM estimated from AMSR-E TB observations using the 

regression approach (referred to as AMSR-reg) and that retrieved from AMSR-E TB 

observations implementing the Land Parameter Retrieval Model (LPRM) model, developed at 

Vrije Universiteit Amsterdam in cooperation with the NASA (VU-NASA) (Owe et al., 2001) 

(referred to as AMSR-VUE), has been also carried out. The comparison was performed at the 

global scale considering the 2007- 2009 period. AMSR-VUE SSM products were used in this 

comparison, among other AMSR-E SSM retrievals, as they were shown to be the best (Brocca 

et al., 2011; Draper et al., 2009a; Gruhier et al., 2010). Correlation (R) and RMSD (m
3
/m

3
) 

indicators were selected to study the consistency of both SSM retrievals in time evolution and 

spatial patterns.  

The temporal correlation between the AMSR-reg and AMSR-VUA is shown in Fig. 

6.7a. High temporal correlations (R>0.75) are obtained over, particularly, the Sahel, central 

USA, and Europe regions, whereas a small correlation (even negative) is mainly obtained in 

the tundra regions, where the remotely-sensed retrievals are affected by the permanent snow 

cover and frozen soil. Except for the tundra regions, the results reveal that almost all over the 

world the AMSR-VUA and AMSR-reg are consistent. Consistently, Fig. 6.7b shows that high 

RMSD values are obtained over the tundra regions, but also over North-Eastern Australia, 

whereas small RMSD values have been mainly obtained over arid regions such as the Middle 

East, extreme South Africa, Western Australia, etc. High RMSD values over the Northern 

Australian region may be associated to the overestimation of the SSM values by the AMSR-

reg as the intercept coefficient was high over these regions, hence leading to high retrieved 

SSM values. 
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Fig. 6 - 7 Maps of correlation between the AMSR-reg and the AMSR-VUA SSM products (top 

panel) and b) RMSD (m
3
/m

3
) between the AMSR-reg and the AMSR-VUA SSM products 

(bottom panel). Only significant correlations (p-value < 0.05) are presented. White areas 

over land indicate areas with dense vegetation, strong topography, and wetlands. 
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6.3.4 Product evaluation against a reference (MERRA-Land) 

As it is difficult to draw a concrete conclusion from the comparison between the 

AMSR-reg and AMSR-VUA about the performance of the regressed SSM data, both the 

AMSR-reg and AMSR-VUA retrievals were evaluated against independent land surface 

model simulations. To this end, we used the SSM product MERRA-Land obtained from the 

MERRA (Modern-Era Retrospective analysis for Research and Applications) reanalysis over 

the 2007-2009 period. MERRA-Land has been recently developed from MERRA as a 

supplemental and improved product of land surface hydrological fields (Reichle et al., 2011). 

Figs. 6.8a-d show that the large-scale spatial patterns are relatively similar for both 

AMSR-reg and AMSR-VUA, with a slightly better ability of AMSR-VUA to capture the 

long-term MERRA-Land SSM variability than AMSR-reg. Figs. 6.8 a and b show that strong 

correlations between the global remotely sensed and the reference SSM products are found in 

the transition zones between wet and dry climates (e.g., Sahel), in the Great Plains (USA), and 

India with R greater than 0.5. This can be explained by the strong seasonal annual cycle of 

SSM in these regions (Koster et al., 2004b). However, AMSR-VUA datasets exhibit 

pronounced negative correlations against the reference over all the tundra (high latitude) 

regions, whereas AMSR-reg datasets exhibited moderate, and negative correlations over some 

parts, against the reference over the same regions.    

Figs. 6.8c-d show a similar distribution of RMSD values for both AMSR-reg and 

AMSR-VUA products. For both products, the RMSD show a clear spatial distribution: low 

RMSD values were found over deserts (e.g., the Sahara, the Arabian Peninsula, extreme 

South Africa, and Central Australia), whereas high values of RMSD are found for both 

instruments over locations near the Equator, Southern Eastern Australia for only AMSR-reg, 

over boreal regions particularly for AMSR-VUA. Looking at the correlation and RMSD 

maps, AMSR-VUA have a serious problem over boreal and tundra regions as negative 
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correlations and very high RMSD values are found. The large differences between the 

AMSR-VUA and the reference SSM products, over tundra and boreal regions, may be caused 

by a wrong estimation of SSM when the satellite footprint includes water bodies, as AMSR-

VUA does not account for water bodies. High RMSD values for AMSR-reg appear again over 

the North-Eastern Australia, as already noticed when compared with the AMSR-VUA for the 

same period. As explained before, the intercepts values (b0 coefficient) over these regions are 

high which may explain the high values of RMSD.  

 



186 

 

 

Fig. 6 - 8 Pairwise comparison between the AMSR-reg (left panels) and AMSR-VUA (right panels) SSM products with respect to the MERRA-

Land reference product in terms of the correlation coefficient (R) based on original SSM data (a and b), RMSD (m
3
/m

3
; c and d) during the 2007 

– 2009 period. Only significant correlations (p-value < 0.05) are presented. White areas indicate areas with dense vegetation, strong 

topography, and wetlands. 
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Fig. 6.9 confirms that AMSR-reg better captured the long-term variability of the 

reference SSM datasets over the Eastern USA, boreal and tundra regions, parts of the Sahel, 

northern Europe regions, and at some locations near the equator (in red). On the other hand, it 

can be seen that AMSR-VUA shows better correlations with the MERRA-Land SSM product 

in areas with low to moderate vegetation density (e.g., Australia, Arabian Peninsula, India, 

and Western USA, parts of South America (in blue). - 

 

 

Fig. 6 - 9 Pairwise comparison between the AMSR-reg and AMSR-VUA SSM products with 

respect to the reference MERRA-Land SSM product in terms of correlations based on the 

original SSM data during the 2007 – 2009 period. The map shows the areas where either 

AMSR-reg (red) or AMSR-VUA (blue) correlates better with the reference. Pixels where 

AMSR-reg and AMSR-VUA have similar performances (differences in the values of R lower 

than 0.05) are shown in green. Only significant correlations (p-value < 0.05) are presented 

and white areas indicate that the correlation is not significant. 
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6.4 Summary and conclusions  
 

The potential of a physically-based simple regression algorithm to retrieve SSM from 

space-borne TB observations was investigated in this study at the global scale. This regression 

algorithm has the advantage of requiring only surface temperature as an auxiliary dataset. In a 

first step, regression coefficients (with and without the inclusion of NDVI values) were 

computed for the period 2010-2011 using SMOSL3 SSM, as a reference, and the AMSR-E 

TB observations. The spatial patterns of the regression coefficients were, in general, in 

agreement with the land cover type. The use of NDVI information did not improve the 

regression quality in terms of correlation and RMSD. So regression coefficients without the 

NDVI information were used for the subsequent step of this work. As a second phase, the 

computed regression coefficients were used to produce a SSM product from the AMSR-E TB 

measurements for the 2003-2009 period (AMSR-reg). The AMSR-reg SSM retrievals were 

evaluated against the AMSR-VUA SSM products and against the MERRA-Land SSM 

simulations (considered here as a reference) for the 2007-2009 period. This first evaluation 

results showed that the regression approach is very promising as it produces realistic SSM 

climate record from the AMSR-E TB product in terms of absolute values and time variations.  

Further studies are required to improve the regression approach, within the upcoming 

CCI programme phase 2 of the ESA, including (i) analyzing more in depth the link between 

the maps of the calibrated coefficients in relation to the soil physical properties (soil texture, 

structure, etc.), (ii) using other vegetation information such as the LAI or the other vegetation 

indices, (iii) evaluating AMSR-reg SSM retrievals against in situ sites at the local scale, (iv) 

investigating the temporal consistency of AMSR-reg (2003-2009) and SMOSL3 (2010-2014) 

SSM time series, and (v) doing a trend analysis using the developed time series (2003-2009) 

and the SMOS time series (2010-2014) with a purpose to depict which areas have become 

wetter or drier between 2003 and 2014. 



189 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VII 
 

       7.    Conclusions and perspectives 
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7.1 Summary  
 

 

A new level of the SMOS surface soil moisture (SSM) products has been released, 

namely the SMOS level 3 SSM products (SMOSL3). The SMOSL3 product is recent and thus 

currently subject to validation. In this context, the overall objective of this Ph.D. research 

work was investigating possible similarities and/or discrepancies and possible fusion of 

SMOSL3 SSM products with other existing microwave satellite datasets as an extension of 

preceding efforts to evaluate the SMOS SSM products.  

In the first part of this Ph.D. thesis research (Chap. IV), a comparative analysis of 

SMOSL3, at L-band, with the AMSR-E SSM, at C-band, was presented. SM-DAS-2 SSM 

products were used to monitor both SMOSL3 and AMSR-E SSM from 03/2010 to 09/2011, a 

period during which both SMOS and AMSR-E products were available at the global scale. It 

was shown that both SMOSL3 and AMSR-E captured well the spatio-temporal variability of 

SM-DAS-2 for most of the biomes. In terms of correlation values, the SMOSL3 product was 

found to better capture the SSM temporal dynamics in highly vegetated biomes (“tropical 

humid”, “temperate humid”, etc.) while best results for AMSR-E were obtained over arid and 

semi-arid biomes (“desert temperate”, “desert tropical”, etc.). Finally, we showed that the 

accuracy of the remotely sensed SSM products is strongly related to the Leaf Area Index 

(LAI): (i) both the SMOSL3 and AMSR-E (marginally better) SSM products correlated well 

with the SM-DAS-2 product over regions with sparse vegetation for values of LAI ≤ 1, (ii) in 

regions where LAI >1, SMOSL3 showed better correlations with SM-DAS-2 than AMSR-E, 

and (iii) SMOSL3 had a consistent performance up to LAI = 6, whereas the AMSR-E 

performance deteriorated with increasing values of LAI. This section reveals that SMOS and 

AMSR-E complement one another in monitoring SSM over a wide range of conditions of 

vegetation density and that there are valuable satellite observed SSM data records over more 

than 10 years, which can be used to study land–atmosphere processes. This is one of the first 
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studies confirming the different effects of vegetation on L and C-bands signals with 

observations from sensors in space. In the passive microwave domain, L-band has long been 

considered as an optimal frequency to monitor SSM. When a vegetation layer is present over 

the soil surface, it attenuates the soil emissions and adds its own contribution to the emitted 

radiation measured by passive microwave radiometers. The retrieval algorithm attempts to 

decouple the effects of soil and vegetation in order to provide an estimation of SSM. 

However, as vegetation effects increase with increasing frequency, the correction for 

vegetation effects is more complex at C-band (~ 6.6 GHz for AMSR-E) than at L-band 

(~ 1.4 GHz for SMOS). Moreover, SMOS has multi-angular capabilities which make it, 

theoretically, more efficient for decoupling the soil and vegetation effects than mono-angular 

spatial radiometers such as AMSR-E. The combination of both a L-band system and multi-

angular capabilities for SMOS compared to a C-band system and monoangular capabilities for 

AMSR-E explains the improved performance of SMOS over biomes with dense vegetation 

cover and for LAI values larger than 1. 

The second part (Chap. V) investigated the consistency between the passive SMOSL3 

and the active ASCAT SSM products with respect to land surface model SSM from the 

MERRA-Land product. It was found that the SMOSL3 and ASCAT SSM retrievals were 

consistent with the temporal dynamics of modelled SSM (correlation R>0.70) in the transition 

zones between wet and dry climates, including the Sahel, the Indian subcontinent, the Great 

Plains of North America, Eastern Australia, and South-Eastern Brazil. Over relatively dense 

vegetation covers, a better consistency with MERRA-Land was obtained with ASCAT than 

with SMOSL3. However, it was found that ASCAT retrievals exhibit negative correlation 

versus MERRA-Land in some arid regions (e.g., the Sahara and the Arabian Peninsula), most 

likely because of scattering effects in the soil that are not correctly accounted for over very 

dry surfaces. In terms of anomalies, SMOSL3 better captures the short term SSM variability 
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of the reference dataset (MERRA-Land) than ASCAT over regions with limited radio 

frequency interference (RFI) effects (e.g., North America, South America, and Australia). The 

seasonal and latitudinal variations of SSM, as revealed by Hovmöller diagrams, are relatively 

similar for the three products, although the MERRA-Land SSM values were generally higher 

and their seasonal amplitude is much lower than for SMOSL3 and ASCAT. Finally, both 

SMOSL3 and ASCAT had relatively comparable triple collocation errors with similar spatial 

error patterns: (i) lowest errors in arid regions (e.g., Sahara, and Arabian Peninsula) and 

Central America, and (ii) highest errors over most of the vegetated regions (e.g., northern 

Australia, India, Central Asia, and South America). However, the ASCAT SSM product is 

prone to larger random errors in some regions (e.g., North-Western Africa, Iran, and southern 

South Africa). As in the comparison of SMOS and AMSR-E, vegetation density was again 

found to be a key factor to interpret the consistency with MERRA-Land between the two 

remotely sensed products (SMOSL3 and ASCAT) which provides complementary 

information on SSM. The correlation (R) values increase almost linearly with LAI for 

ASCAT, from R ≈ 0.18 to R ≈ 0.55 as LAI increases from about 1 to 7. For SMOSL3, on the 

other hand, R values remain relatively constant as LAI increases, with values between ~ 0.32 

and 0.44. SMOSL3 provides higher correlation values with the reference than ASCAT when 

LAI is lower than 1 (i.e. over sparse vegetation covers) and similar R values are obtained for 

SMOSL3 and ASCAT for intermediate LAI values (1 ≤ LAI ≤ 3). 

The third part (Chap. VI) investigated the use of physically based multiple-linear 

regressions to retrieve a global and long term (e.g. 2003-2014) SSM record based on a 

combination of passive microwave remote sensing observations from the AMSR-E (2003 - 

2011) and SMOS (2010 - 2014) sensors. The coefficients of these regression equations were 

calibrated using AMSR-E TB and SMOSL3 SSM (as a reference). This calibration process 

was carried out over the 2010- 2011 period, over which both SMOS and AMSR-E 
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observations coincide. Based on these calibrated coefficients, global SSM maps were 

computed from the AMSR-E TB observations over the whole 2003-2011 period (AMSR-reg). 

The AMSR-reg SSM retrievals were evaluated against the AMSR-VUA SSM products, for 

the 2010-2011 period, and the MERRA-Land SSM simulations (considered here as a 

reference) for the 2007-2009 period. The results showed that the regression approach is very 

promising as it produces realistic SSM climate record from the AMSR-E TB product in terms 

of absolute values and time variations. The R (mostly > 0.75) and RMSD (mostly < 0.04 

m
3
/m

3
) maps showed a good agreement between the AMSR-reg SSM retrievals and the 

AMSR-VUA SSM retrievals as well as the MERRA-Land SSM simulations particularly over 

Australia, Central USA, Central Asia, and the Sahel.  

7.2 Main conclusions 
 

 

Based on the results of the three Chapters (IV, V, & VI) of this Ph.D. thesis research, 

joint conclusions can be drawn: 

(i)  There is, in general, a good correspondence between the SMOSL3 and ASCAT 

(AMSR-E) derived SSM products with the MERRA-Land (SM-DAS-2) reference 

in the transition zones between wet and dry climates (e.g., Great Plains of North 

America, Sahel), Eastern Australia, and South-eastern regions of Brazil. It is worth 

noting that these regions are regions of strong coupling between soil moisture and 

precipitation, where accurate soil moisture values are crucial to accurate weather, 

climate, and probably hydrological modelling. 

(ii) The performance of SMOS satellite was the same whether it was compared with 

AMSR-E or ASCAT over the USA and Central Asia, as it correlated better to the 

reference datasets over these regions than AMSR-E and ASCAT. 
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(iii) Different performances of SMOS were noted when it was compared to AMSR-E 

and ASCAT over arid regions (e.g., the Arabian Peninsula) and regions with 

moderate vegetation (e.g., the Sahel). Over arid regions, for instance, SMOSL3 

was closer to the reference than the ASCAT, whereas AMSR-E was closer to the 

reference than the SMOSL3. Over regions with moderate vegetation, SMOSL3 

was closer to the reference than the AMSR-E, whereas ASCAT was closer to the 

reference than the SMOSL3. More specifically, higher (lower) correlations with 

the reference were obtained for SMOSL3 than for ASCAT (AMSR-E) when LAI 

is less than 1 (which corresponds to almost 50% of the pixels considered in this 

study). This implies that vegetation plays a key role in the performance of the 

SMOSL3 (as well as ASCAT and AMSR-E) SSM products, and the different 

satellite products have different sensitivities to vegetation. Generally, SMOS is 

more (less) efficient at monitoring SSM than ASCAT (AMSR-E) over sparse 

vegetation, whereas (AMSR-E) ASCAT is (less) more efficient over relatively 

dense vegetation (LAI >3). It should be noted that these conclusions are relative to 

the references used in these studies. 

(iv) RFI contamination of SMOSL3 was found to be the key factor in the interpretation 

of the consistency between the SMOSL3 and the other two remotely sensed 

products (AMSR-E and ASCAT), with major issues over Europe, Middle East, 

and India, in particular. 

(v) The complementary performances between SMOSL3 and the other two remotely 

sensed datasets revealed a potential synergy between the passive (SMOS) at L-

band and passive (AMSR-E) and active (ASCAT) microwave systems at C-band, 

which is very promising for the development of improved, long-term SSM time 
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series at global scale, such as those pursued by the European Space Agency’s 

(ESA) Climate Change Initiative (CCI). 

(vi) Statistical regressions were proven, for the first time, capable of retrieving realistic 

SSM values in terms of temporal variations and absolute values from space-borne 

observations at the global scale. 

7.3 Limitations 
 

There are two main limitations that were encountered during this Ph.D. thesis 

research: 

 The first limitation in our evaluation studies was that the SMOSL3, AMSR-E, 

and ASCAT remote sensing SSM products were provided with different spatial 

resolutions, acquisition times, sampling depths, techniques and limitations. This 

disparity among these different datasets might have influenced the statistical 

indicators used in the evaluation results, but it is difficult to say how much the 

impact was.  

 The second limitation in our evaluation studies was the choice of land surface 

simulations and land data assimilation SSM estimates as references due to the 

limited availability of the in-situ observations at the global scale. We considered 

MERRA-Land and SM-DAS-2 SSM estimates, based on their reliability 

performances highlighted by previous studies, to perform the evaluations. But it 

is difficult to say which model is the best for this purpose and to determine which 

one is more reliable or ‘true’. Therefore, MERRA-Land or SM-DAS-2 can be 

more detrimental for SMOS or the other two satellites. One must keep in mind 

that, when using them to evaluate other SSM products, the interpretation of the 

results is hampered by their own accuracy. 
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7.4 Perspectives 
 

 

Researches on the exploitation and consolidation of the SMOS algorithm, products, 

and possible applications are far from complete. There are a number of possible ways to 

verify, refine, and develop the results analyzed in this Ph.D. thesis research, and also to 

continue the evaluations dealing particularly with issues left open at the end of this document. 

Further research may attempt to go further in the following tasks: 

1. The evaluation of remote sensing products is a continuous task as datasets are 

continuously enlarged and new algorithms are available. We recommend 

investigating the performance of SMOS SSM products using longer datasets as 

the SMOS SSM product in this Ph.D. research work was evaluated for the 

period 2010-2011 and 2010-2012. It is expected that with the new processing 

campaign a 5 year coherent of SMOS dataset will be available in 2015. A 

continuous validation procedure can be imagined which automatically monitors 

SSM products at the global scale taking into account regional information and 

analysis as the ones presented in this Ph.D. research work. 

2. The quality of the current SMOS SSM retrieval algorithm, used to translate 

observed TB into SSM, was recently enhanced by the substitution of the 

Dobson dielectric model with the Mironov dielectric mixing model, and the 

new retrieved SSM products will be released soon. An attempt will be made to 

perform a first assessment of the improvements of the most recent SMOS 

reprocessing: in particular the impact of introducing the Mironov model. Also, 

there is room for improvement in the SMOS retrieval algorithm by enhancing 

the RFI filtering. Some regions such as Europe, China, India, etc. are severely 

contaminated by the RFI at L-band, which led to unreliable SMOS SSM 

retrievals over these regions. The RFI problems are common issues for most 
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radiometers, and efforts should be pursued on international level to minimize 

them. Furthermore, alternative soil moisture algorithms in particular the use of 

neural networks and statistical regression analyses proposed in Chapter VI, 

should be considered, especially over regions where the forward algorithm fails 

to accurately retrieve the SSM. Using these methods will also help in retrieving 

SSM in real time as using the standard algorithm (forward modelling) takes 

one month to retrieve SSM for one year whereas the other methods take 

roughly no more than a few hours. Furthermore, the SMOS SSM algorithm 

should account for changes in vegetation optical thickness (τ) and roughness of 

the soil surface caused by farming practices (e.g. tillage) and planting 

activities, which may confuse the satellites (Patton & Hornbuckle, 2013). For 

instance, new approaches such as the one combining vegetation and roughness 

effects within one parameter (TR) (Fernández-Morán et al., 2014; Parrens et 

al., 2014), which is retrieved simultaneously to SSM, may improve the SMOS 

SSM products. The evaluation procedure of these products can benefit from the 

analyses presented in the PhD and can be a common benchmark for them. 

3. Unfortunately, in the highly vegetated regions, in situ data are almost 

completely unavailable so that it was unfeasible at the moment to investigate in 

detail the quite surprising finding of SMOS performance against ASCAT data 

over these regions, where ASCAT was closer to the model in terms of 

correlation. However, in-situ measurements stations are growing and this issue 

can be further investigated. More generally, the validation of the SMOS SSM 

products will significantly benefit from the increasing number of in-situ soil 

moisture networks thanks to efforts like the International Soil Moisture 

Network initiative (http://www.ipf.tuwien.ac.at/insitu/) (Dorigo et al., 2011). In 
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this Ph.D. research work we also found that passive L-band microwave (e.g. 

SMOS) proved to be performant in semi-arid areas, where RFI is low, 

compared to active C-band sensors (e.g. ASCAT). These areas are subject to 

high stress in terms of water resources and satellite based SSM datasets are 

very useful to monitor this stress. For instance, specific studies need to be 

developed in semi-arid areas (like Yemen). The combination of multi-sensors 

(SMOS, the upcoming SMAP mission, AMSR-E) supported by in-situ 

monitoring station, to be installed in Yemen, is envisioned in the near future. 

4. As said previously, one of the limitations of this Ph.D. research was using 

Land Surface Models simulations as benchmarks, which are commonly used 

for evaluating the remotely sensed SSM at larges scales. Much less attention 

has been paid to the use of other space-borne datasets such as the Gravity 

Recovery and Climate Experiment (GRACE) satellite, which has been 

providing information on total water storage change (TWS) since 2002. This 

limitation can be overcome, in the future, by integration of GRACE data, for 

instance, into the validation of SMOS SSM datasets. Possibilities and benefits 

of relating the SMOS SSM products to TWS provided by the GRACE should 

be investigated. Abelen & Seitz (2013) compared GRACE data, for instance, 

against ASCAT SSM products using correlation analysis between change in 

SSM from ASCAT and change in TWS from GRACE. This can be done using 

also SMOS SSM products to identify regions where the change of TWS is in 

agreement with SSM, thus, the regions where SMOS datasets may be useful for 

the understanding of TWS and vice-versa. On the other hand, GRACE is only 

able to provide the TWS but not to determine the individual contribution of 

each variable in the observed TWS integral signal. Further research shall focus 
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on incorporating SMOS SSM datasets with GRACE products, which may be of 

help to separate the GRACE TWS datasets. In addition, GRACE and other 

remotely sensed products for all components (i.e. precipitation, 

evapotranspiration, runoff, and water storage) of the water budget have been 

recently used to compute and evaluate the potential of water budget closure. 

Sheffield et al. (2009), for instance, used the stream flow component as the 

water balance closure and was evaluated over the Mississippi River basin 

against stream flow measurements. Including SMOS datasets in these analyses 

by, for instance, closing the water budget using SSM and evaluating errors 

using the SMOS SSM datasets can be investigated in the near future. 

5. Many studies suggest the use of multi-sensors data to disaggregate SSM from 

microwave data (Merlin et al., 2008; Merlin et al., 2010; Merlin et al., 2012; 

Merlin et al., 2013; Piles et al., 2011). Those methods deliver high spatial 

resolution soil moisture. Analyses similar to the ones done in this Ph.D. need to 

be done to compare those approaches over different climatic conditions. 

6. The SMOS, AMSR-E, and ASCAT missions have their own advantages and 

limitations as was shown throughout this Ph.D. research work. Some perform 

better over arid regions; others can be better for vegetated areas. It is 

recommended to make a product from these different sensors where spatially 

each sensor has a different weight. This will be achieved by, for instance, 

taking advantage of each sensor on different places while conserving spatial 

and temporal coherence. The integration procedures (simple weighting, the 

constrained linear method, the optimal interpolation method, and the neural 

network technique) developed by Aires (2014) can be applied to optimally 

combine the multiple observation datasets to obtain a coherent dataset. 
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7. Further analyses are to be focused on the extraction of long-term trends from 

the 11 year time series (i.e. 2003-2010 from AMSR-reg and 2010-2014 from 

SMOS) SSM with a purpose to depict which areas have become wetter or drier 

between 2003 and 2014. Before doing the trend analyses, the homogeneities of 

the developed long-term SSM time series should be examined over the full 

period i.e. 2003 -2014. There are special algorithms/ways that could be used to 

detect the discontinuities, which may cause misinterpretation of the trends, in 

the SSM time series for the whole period (e.g., Easterling & Peterson, 1995; 

Loew et al., 2013; Moisselin J-M & O, 2002). 

8. The upcoming SMAP mission will provide continuity for L-band 

measurements of SMOS. At the end of this year (2014), the SMOS mission 

will have been in the space for 5 years, and the SMAP satellite would be just 

launched. A consolidated SSM product, that is suitable to fill climate change 

research gaps, can be obtained through data fusion between SMOS and SMAP 

SSM products. How to build seamless data record of SSM from SMOS to 

SMAP should be envisaged, with insights from the analyses performed in this 

Ph.D. research work. 
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