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Abstract 

Modeling of river flow routing has been widely used to compute the water level, discharge, 
and storage etc. by simulating the waterflow behavior. In actual research, there are mainly two 
kinds of ways: hydraulic and hydrological routing approaches. Among the latter, one of the 
most popular is the Muskingum method. 
 
However the general Muskingum method can only calculate the flow in a uniform river reach, 
which is regarded as a uniform linear reservoir. If the parameters and the inflow are known, 
the outflow at the outlet of the reach is easily obtained, but it does not depend on river stage, 
which is not deduced from the storage in the reach.  
 
As we know, the characteristics of the stream reach have some influence on flow routing. One 
famous equation which connects the reaches’ characteristics and flow velocity is Manning 
equation. Therefore in this study, we combine the Muskingum method and Manning equation 
to develop the so-called Muskingum-and-Manning method, which describes the variations in 
river stage and its influence on flow velocity and outlflow.  
 
By testing the Muskingum and Muskingum-and-Manning methods in a simple reach and in a 
hypothetic regular river network, we showed the importance of the numerical integration 
method to achieve valid results. We showed the superiority of the 4th order Runge-Kutta 
method on the Euler method, and that a time step of 6hours at most was advisable. In these 
conditions, the simulations with both routing methods rightly reflect the influence of their 
different parameter, of hydrological conditions, and of the characteristics of the river bed for 
the Muskingum-and-Manning method. This physically-based method, combined to the 
numerically efficient 4th order Runge-Kutta integration method, will be the basis on full 
routing model, to be validated in the future, in particular in the Seine river basin.  
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List of notations 

SYMBOL UNIT DEFINITION CHAPTER, 
PARAGRAPH 

Capital letters 

A m² wetted cross sectional area §2.1 
I m3/s inflow (upstream) §2.1 
L m reach length §2.3 
P m wetted perimeter §3.2.1 
Q m3/s outflow discharge §2.1  
Qw m3/s weighted discharge §4.5 
R m hydraulic radius §3.2.1 
S m3 storage in the reach  §2.1 
T m reach width §2.3 

Tlag s lag time §2.2 
Ts s travel time §2.3.2 
V m/s flow velocity (instantaneous) §2.1 
Z m water surface elevation or stage §2.2 

Small letters 

k s wave travel time (Muskingum parameter) §2.3 
n s/m1/3 Manning's coefficient of roughness §3.2.1 
q m3/s lateral inflow or outflow §2.1 
s0 - -  slope of riverbed §3.2.1 
t s time §2.1 

vc m/s mean flow velocity in a reach §3.1 

xa m distance along the longitudinal axis of the 
watercourse §2.1 

x - -  weighting factor (Muskingum parameter) §2.3 
y m water depth in reach §2.2 
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1. Introduction 

Land surface models (LSMs) simulate the coupled water and energy fluxes from terrestrial 
surfaces. They are an important element of general circulation models, which are used in 
particular to produce scenarios of anthropogenic climate change. They can also be used in a 
stand-alone mode to simulate the response of runoff to various climate or land use scenarios. 
As for all models, validation is a mandatory step to gain confidence in the simulated 
projections. An interesting validation exercise for LSMs is to compare their runoff to 
riverflow, which integrates the runoff from the whole area upstream from the gauging station, 
and which is a widely available data, recorded with an interesting precision, and in many 
areas for several decades at least. However, runoff and riverflow are not directly comparable. 
Runoff is a flow per unit surface (expressed for instance in mm/d) and riverflow is the 
integration of the latter over the contributing area, with complex delays, related to the length 
and roughness of the many different water pathways from the points of runoff production to 
the gauging station. This transformation is often called runoff routing, and can be separated in 
two processes, namely the routing of runoff to the closest river reach, and the routing inside 
the river network, which includes the delays imposed to riverflow along the reaches, and the 
accumulation of riverflow at each confluence.  
 
In this thesis, we address the question of river flow routing only. To this end, there are a lot of 
methods described in traditional hydrological literature that are used. These methods can be 
generally classified into two categories: 
 

(1) Hydraulic or distributed routing methods – Use both continuity and momentum 
equations to describe unsteady, non-uniform flow in a flow system. It is based on Saint-
Venant equations, a continuity equation which describe the balance between input, storage 
and output in a section of river, and a momentum equation which relates the change in 
momentum to the applied forces (e.g., Liggett, 1975; Bathurst, 1988; Becker and Serban, 
1990). 
 
(2) Hydrological routing methods – Use continuity equation, along with an analytical or 
an assumed relationship between storage and discharge within a system, in the calculation. 
It is also based on the continuity equation but empirical relationships are used to replace 
the momentum equation (e.g., Sherman, 1932; Carter and Godfrey, 1960; Cunge, 1969; 
Dooge et al, 1982; Wilson 1990) such as the Muskingum, Muskingum-Cunge and the 
Unit Hydrograph methods. A comprehensive review of hydrological flood routing 
methods is presented by Weinmann and Laurenson [1979]. In practice, because Saint-
Venant equations are far too complex for normal requirements and require data that are 
difficult to obtain, hydrological routing models are used more often. [Arora et al, 2000] 
 

The above-mentioned functions are widely accepted as hydrological routing techniques and 
are extensively used in engineering practice. In this study, we developed a routing procedure 
which has two components – the Muskingum method and Manning equation. One important 
goal was to simulate the variations of river stage in the reach, to better describe the dynamics 
of river discharge by accounting for the increase of river velocity with water stage, but also as 
it opens the possibility to simulate flooding above a critical stage. 
 
In this procedure, the proportionality coefficient of Muskingum, k, which is defined no longer 
to be a constant parameter as usual, is variable with the change of the storage in the reach. 
Owing to the varying coefficient k, the result of the Muskingum method should draw closer to 
the running situation in reality. 
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This so-called Muskingum and Manning method is applied in the computational procedure 
with the fourth-order Runge-Kutta (RK4) numerical method to advance the flow routing 
through the whole integration time. By studying the sensitivities to different values of the 
parameters and comparing the results in different forcing cases, this method was found 
suitable for the general rivers. 
 
The next chapter presents the basic equations in most flow routing methods. It starts with the 
mass conservation equation, and then it introduces the hydraulic and hydrological routing 
methods, with some examples.  
 
We chose to work with a hydrological method (different from distributed along the reach), 
and we selected the widely used Muskingum method, which is detailed in chapter 3. The 
limitation of this method with respect to the objective of this work is that it neither describes 
the evolution of river stage, nor the influence of the latter on river discharge. To this end, we 
combined it to the Manning equation in what we called the Muskingum-and-Manning method. 
 
Chapter 4 explains the numerical method we used to integrate both the Muskingum and the 
Muskingum-and-Manning schemes over time in a given reach. We showed the interest of a 
fourth-order Runge-Kutta method and the importance of the integration timestep to achieve a 
correct precision. In particular, we showed that the concern of negative outflow reported with 
the Muskingum method is a numerical problem which can be totally overcome with an 
adequate timestep. 
 
After these theoretical considerations, Chapter 5 details the application of both the 
Muskingum and Muskingum-and-Manning methods to a single reach and shows, as a 
theoretical validation exercise, that the sensitivity of the simulated hydrologic variable to the 
input parameters agrees with the theory, under different hydrological forcing. This validation 
is generalized in a theoretical river network. 
 
Eventually, Chapter 6 describes how the Muskingum-and-Manning method could be applied 
in the Seine River basin, using the runoff simulated by the Catchment-based LSM [Koster et 
al, 2000, Ducharne et al, 2000] as well as the morphology of the main river. This simulation 
work is left to be continued in the future, because we lacked for the runoff simulation results. 
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2 River flow routing method 

In Handbook of Hydrology [Maidment, 1993, Sec. 10.1], flow routing is defined as a 
mathematical procedure for predicting the changing magnitude, speed, and shape of a flood 
wave as a function of time at one or more points along a watercourse (waterway or channel). 
Generally, flow routing can be classified as either lumped or distributed. All of these flow 
routing methods are based on the basic equation of one-dimensional flow, the mass 
conservation. 
 

2.1 Fundamental equation - mass conservation 

The conservation of mass along a river reach, also called continuity equation, is the 
fundamental principle in practice to express the water balance within a closed scope, and is 
defined below: 

                                                                   0)(
=−

∂
∂

+
∂

∂ q
t
A

x
AV

a

                                          (2-1) 

V is the flow velocity in m/s; A is wetted cross section area in m²; xa is the distance along the 
longitudinal axis of the watercourse; t is time interval in s; and q is lateral inflow or outflow in 
m3/s, which is ignored in our study. 
 
In this differential equation (Eq. (2-1)), xa and t are respectively the spatial and temporal 
dimensions of the river flow variables, A, V, and p, which can be expressed as follows: 
 

                                     ( ) ( ) ( )txfptxfVtxfA aaa ,,,,, ===                   (2-2) 
 
Basically, the dynamic equation is a differential equation of xa and t (Eq. (2-1)). In 
hydrological methods, or lumped methods, it is replaced by a simpler relationship, which does 
not depend on xa. Therefore, the flow is computed as a function of time only at one location 
along the watercourse, usually one reach. Hence the principle of mass conservation requires 
the difference between the two flows to be equal to the time rate of change of the storage S 
within the reach, the conservation equation can be simplified as: 
 

                                                    
dt

tdS )(  = I(t) – Q(t) – q(t)                                       (2-3)  

 
Where S(t) is storage in the reach, in m3; I(t) is the 
inflow discharge, in m3/s; Q(t) is the outflow 
discharge, in m3/s, which is showed in Fig. 2-1. Eq. 
(2-3) is often referred to as the hydrologic storage 
equation. 
 
This relationship between the storage in the reach 
and discharge can easily define the outflow 
discharge Q(t) if we know the initial conditions of 
storage S(t=0) and the inflow I(t) at each time step, as presented in Fig. 2-2. The hatched part 
in this figure is the change in storage during a certain period of time (here is 1 day), and it is 
also the integral of the difference between inflow and outflow during this period.  
 

L 
Q

I

q

S 

Figure 2-1. Schema of river reach 
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In such a lumped formulation of the routing problem, the state-space vector is reduced to a 
single variable S(t) giving the storage in the reach at any particular instant. Eq. (2-3), when 
rearranged to give the outflow Q(t) as a function of the state S(t) and the input I(t), gives us 
the output-state equation in standard form and the insertion of this expression for the output 
Q(t) in Eq. (2-1) gives us the state transition equation in standard form [Dooge et al, 1982].  
 

 
Figure 2-2. Schematic of upstream and downstream flow hydrographs  

 

2.2 Distributed routing method 

In distributed routing or hydraulic flow routing methods, the flow is computed as a function 
of time simultaneously at several cross sections along the watercourse and water depth 
(elevation) varies in space (at cross sections along the channel) as shown in Fig. 2-3.  
 

 
Figure 2-3. Schematic showing distributed flow routing system, where Q is discharge or flow 

rate and Z is water surface elevation or stage 
 
Distributed flow routing based on the complete Saint-Venant equation is known as dynamic 
routing. Also, simplified form of the Saint-Venant equations, referred to as kinematic and 
diffusion (zero-inertia) equations, can be used for distributed flow routing. 
 
Distributed flow routing methods can compute both the flow rate and water-surface elevation, 
which is useful for determining floodplain depths or required heights of structures. And it can 
also be used for such applications as real-time forecasting of river floods, etc.  
 
In this study, the variations of the flow rate, velocity, and depth (elevation) in space are not 
required at a fine resolution, so we chose lumped routing methods which compute the flow as 
function of time. 
 

Upstream boundary 
Q(t) or Z(t) 

Downstream boundary 
Q(t), Z(t) or Q(Z) Cross sections 
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2.3 Lumped routing method 

A simplified description of unsteady flow along a watercourse (routing reach) as shown in Fig. 
2-4, depicts it as a lumped process, in which the inflow I at the upstream end and the outflow 
Q at the end of the watercourse are functions of time.  
 

 
Figure 2-4. Schematic showing lumped flow routing system 

 
Lumped flow routing methods for rivers offer the advantage of simplicity where there is an 
absence of significant backwater effects, and it could be applied where the depth-discharge 
relation is essentially single-valued, and the product of the time of rise of the hydrograph and 
the channel bottom slope is not small. Some common lumped models are listed in Tab. 2-1. 
 

Table 2-1. Examples of hydrological models 
Condition Model name Equation 

Simple delay 
[Bolgov et al, 2002] 

)( lagTtIQ +=  
Q ≠ f(S) and V ≠ f(S) Lag-and-route 

[Linsley, et al., 1949] 
)),(( lagTtIfQ =  

Linear reservoir 
[Hannah et al, 2001] VLQSSQ /;./ ==⇔= τττ  

Q = f(S) and V ≠ f(S) Muskingum  
[McCarthy, 1939] [ ] VLkQxIxkS /;)1( =−+⋅⋅=  

Q = f(S) and V = f(S) Muskingum-and-Manning 
[Dooge, 1982]  

3/22 2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅+⋅⋅
=

ST
STL

s
Lnk
o

 

Here, Q is outflow discharge, m3/s, S is storage in reach, m3, V is velocity, m/s, I is inflow discharge, 
m3/s, t is time, s, Tlag is lag time, τ is linear coefficient, k, x are Muskingum parameters, n is manning’s 
coefficient, s/m1/3, so is riverbed slope, L is reach length, m, T is reach width, m. 
 

2.3.1 Muskingum method 
The Muskingum method, which was first proposed by McCarthy [1939], is still a subject of 
research [Hjelmfelt, 1985; Perumal, 1992; Gill, 1992] in the domain of flow routing 
calculation and some hydrological reasoning. The recent developments made it possible to 
link the Muskingum model, which used to be treated as an empirical concept, with 
hydrodynamics. Cunge [1969], who demonstrated that Muskingum method could be 
considered as being numerically related to the Saint-Venant equation via the diffusion wave, 
compared different schemes of the Muskingum method and of the convective diffusion 
analogy; Dooge [1973] compared the impulse responses of the Muskingum model and of the 
most complete linear hydrodynamic model (i.e. the linearized de Saint-Venant model) using 
the moment matching technique. Strupczewski & Kundzewicz [1980], Dooge et al. [1982] 
and Napiorkowski et al. [1981] derived the Muskingum method by lumping and linearizing 
distributed nonlinear models of hydrodynamics. [Kundzewicz et al, 1982] 
 
By now, the Muskingum method is one of the most popular lumped flow routing technique 
used in hydrograph models, and is also employed in some cases for channel routing elements. 

I(t) Inflow Point Q(t) Outflow Point 
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Dooge et al. [1982] applied this method with the hydraulic parameters of the open channel 
reach to various shapes of cross-section. The Manning friction, the riverbed slope, water 
depth, and the Froude number, were used to express the Muskingum parameters, k and x, to 
be variable in the simulation. It is concluded that the result is credible. Arora [1999] also 
introduced a flow routing scheme, which used the Manning equation for river channel flow, 
and the Muskingum method for routing surface runoff from upstream to downstream.  
 
Therefore, the Muskingum method can be used to simulate river flow with variable 
parameters. We chose the Muskingum method in our study and introduce it in details in Sec. 
3.1 (Page 8-9). 
 

2.3.2 Lag-and-route method 
Like the Muskingum method, another well-known example of handy tools for flow routing is 
the lag-and-route [Linsley, et al., 1949] method. It is particularly attractive for its simplicity, 
stability, and relative efficiency. This method initially used a linear reservoir. However, 
Bentura and Michel [1997] showed that using nonlinear reservoirs was significantly more 
efficient. They compared lag-and-route methods with linear and nonlinear routing stores and 
assessed these models against synthetic data obtained using the complete Saint-Venant 
equations solved by the Preissmann numerical scheme. Their results suggested that the higher 
the exponent of the routing store, the more accurately the method reproduces the routing 
performed by the Saint-Venant equations. Bentura and Michel [1997] provide further details 
on their approach and the specificities of the linear and the quadratic variants. More recently, 
the quadratic lag-and route model served as a basis of the routing module for the QUASAR 
model [Sincock and Lees, 2002]. Michel, et al. [1997] presented a new lag-and-route method 
where the routing reservoir is bi-quadratic. They compared this approach to the classical 
Hayami method. 
 
The normal lag-and-route method comprises a relationship equation between storage and 
discharge as well as the conservation of mass with the travel time parameter Ts, which ensure 
the “routing” part of the method through a reservoir designed to dampen the hydrograph: 
 

dt
tdS )(  = I(t) – Q(t)                                                  

                                                    ( ) α

⎥
⎦

⎤
⎢
⎣

⎡
=

sT
tSQ(t)                                                 

 
Where Ts is the travel time parameter and has units of time; α is the exponent dimension. 
 
Here the time step Δt is split into multi sub-intervals dt. In order to obtain an analytical 
solution, it is necessary to consider this time interval dt small enough so as the inflow I(t) can 
be considered as approximately constant I within dt. After running the routing component of 
the method, the outflow over the time interval is generalized with the following:  
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This relationship between inflow and outflow can be showed in Fig. 2-5. 
 

 
Figure 2-5. Schematic representation of the lag-and-route method [Michel et al, 2006] 

  
 
Compared to the Muskingum method, the lag-and-route method has some disadvantages with 
respect to our goals for flow routing. 
 
♦ The outflow Q(t) depends on the storage S(t) and a travel time Ts, but does not depends 

on the storage in the reach S(t). As in the Muskingum method, the parameters are 
constant. 

 
♦ The lag time Ts should be known and constant. In practice, it is difficult to estimate the 

exact value of Ts.  
 
♦ The most important thing is that in this method, we can not apply Manning equation to 

express the variations of velocity and outflow with the storage in the reach. 
 
Therefore the lag-and-route method is not fit to be used as reference in this study. The simpler 
Muskingum is chosen to be used in following, together with the Muskingum-and-Manning 
method, which is derived from the Muskingum method. 
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3. Hydrologic routing schemes used in this study 

Flow routing is a major problem in hydrological engineering. For this purpose, the so-called 
hydrological methods are still widely used, especially where data concerning the geometry of 
the channel are not available, but the volumes entering and leaving the section is known. 
These methods have the same structure, and are based on the conservation of mass and the 
relationship between storage volume, inflow as well as outflow in the river section. One of 
these methods and perhaps the most frequently used in practice is the Muskingum method. 
 

3.1 Muskingum method 

If the simple relationship between storage S(t) and outflow Q(t) which is presented in Eq. (2-3) 
is developed by adding a storage delay time k and a term involving the time derivative of the 
outflow Q(t), then a conceptual model is obtained consisting of two linear reservoirs in series. 
However if the choice of two parameters is made by assuming that the storage S(t) is linear 
function of the inflow I(t) as well as of the outflow Q(t), then we get the following 
Muskingum equation: 
 
                                                    S (t) = k [x I(t)+(1-x) Q(t)]                                     (3-1) 
 
Where x is a weighting factor having the range 0 ≤ x ≤ 0.5 (most streams have x values 
between 0.1 and 0.3) [Maidment, 1993, Sec. 10.2.3]. Thus, if the water storage in the channel 
is only controlled by the downstream condition, x = 0. On the contrary, x = 0.5 gives a similar 
weight to the inflow and outflow. It means storage is a function of average flow rate. The 
parameter k is the proportionality coefficient of Muskingum equation. It can be estimated as 
follows: 

                                                              
cv

Lk =                                                           (3-2) 

 
Where k is the wave travel time in the reach, in s; L is the reach length in Fig. 2-1, in m; vc is 
a mean velocity, constant in m/s. 
 
From Eq. (3-1), the outflow discharge Q(t) can be calculated from the river storage S(t) and 
the inflow flux I(t):  
 

                                               )1(
)()(Q(t)

xk
tIxktS

−
⋅⋅−

=
                                                 (3-3) 

 
This Muskingum equation represents the relationship between reach storage and discharge as 
a flow wave, defined by the inflow, propagates through the reach. It is used in the Muskingum 
method with the conservation equation, Eq. (2-3).  
 
This method can represent the hysteresis in the relationship between reach storage and 
discharge, which is illustrated in Fig. 3-1. This concept is also depicted in Fig. 3-2 where the 
first case represents the storage in the reach during the rising limb of a hydrograph, the second 
case represents uniform flow, and the third case represents the storage during the falling limb 
of the hydrograph. This hysteresis effect is due to the different flow wave speeds during the 
rising and falling limb of the hydrograph. For the same river stage, the flow wave moves 
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faster during the rising limb of the hydrograph. The effect from this variable reach storage-
discharge relationship is mimicked by the Muskingum equation as Eq. (3-1) for reach storage. 
[Boroughs et al, 2002].  
 

 
Figure 3-1. Storage in a River Reach versus Reach Outflow [Boroughs et al, 2002] 

 

 
  Figure 3-2. Depiction of Reach Storage as a Flow Wave Propagates Downstream [Boroughs et al, 

2002] 
 
Generally speaking, the Muskingum method comprises the mass conservation and the 
Muskingum equation:    

                                                      
dt

tdS )(  = I(t) – Q(t)                                                  

                                                       S (t) = k [x I(t)+(1-x) Q(t)]                             
The Muskingum method serves to calculate the flow in a given section, with a given time 
increment and parameters k and x calibrated using previously measured runoff inflow and 
outflow (where k is the storage parameter and x is the weight factor). k and x can also be 
prescribed a priori, by transferring parameters validated in similar reaches. 
 
This method enables the routing of a given discharge hydrograph downstream of a uniform 
river or channel reach to any desired location, and also computes the corresponding stage 
hydrograph as in the case of the solutions of the Saint-Venant equations. The Muskingum 
method, however, defines a lumped storage hydrograph for the studied reach. 
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3.2 Muskingum-and-Manning method 

3.2.1 Manning equation 
In practice, the river velocity largely depends on the parameters of environmental conditions 
such as the river bed condition and the river storage. The Manning - Strickler formula, one of 
the best known and most often used equations to calculate river flow velocity whatever the 
geometry of the reach, is considered to meet these demands. It is formed of common 
geometrical parameters as below: 

                                                           1/2
O

2/3 sR 1 v ⋅⋅=
n

                                             (3-4) 

Where v is cross-sectional average velocity, in m/s; n is the Manning coefficient of roughness, 
in s/m1/3; R is the hydraulic radius, in m (illustrated in Fig. 3-3); so is the river slope, without 
dimension. 
 
Given that Q = A·V, where A is the wetted section area of flow, Eq. (3-5) can be developed to 
calculate the discharge by knowing the river stage and geometry, which control A and R: 

                                                             
1/2

O
2/3 sR  Q ⋅⋅=

n
A

                                          (3-5) 
The hydraulic radius R of a specific river cross section is temporally variable due to river 
stage dynamics. It depends on the shape of the river bed profile and the actual water level: 

                                                                  
P
AR =                                                       (3-6) 

Where A is the wetted cross sectional area of flow varying as the storage in reach, in m2; P is 
wetted perimeter, in m. Fig. 3-3 expresses the general wetted section area A and wetted 
perimeter P as well as the hydraulic radius R when the cross section is irregular. 
 

 
Figure 3-3. Schematic of the hydraulic radius R in an irregular flow cross section, where T is the width 

of water surface, in m 1 
 
The river slope s0 is calculated as elevation difference between the upstream and downstream 
altitudes of the river bed, divided by their horizontal distance. 
 
The Manning coefficient of roughness, n, is an empirically derived coefficient, which is 
dependent on many factors, including river-bottom roughness and sinuosity. Often the best 
method is to use photographs of river channels. Values of n typically range between 0.02 for 
smooth and straight rivers, to 0.075 for sinuous rivers and creeks with excess debris on the 
                                                           
1 Water measurement manual, revised reprint 2001, http://www.usbr.gov/pmts/hydraulics_lab/pubs/wmm/chap02_11.html 
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river bottom or river banks [Goodwill; Fette]. From the mathematics, it follows that a greater 
n-value will result in a smaller value for flow velocity, thus in slower flow and smaller 
outflow. In Tab.3-1, here are some typical n values. 
 

Table 3-1. Manning’s n range in different type of channel [Goodwill; Fette] 

Channel type Surface material  and form Manning's Roughness 
Coefficient - n 

River earth, straight  0.02-0.025 
 earth, meandering 0.03-0.05 
 gravel (75-150mm), straight 0.03-0.04 
 gravel (75-150mm), winding 0.04-0.08 
 winding natural streams with weeds 0.035 
 natural streams with little vegetation 0.025 
Mountain streams  rocky beds 0.04-0.05 
Unlined cannel earth, straight  0.018-0.025 
 rock, straight 0.025-0.045 
Lined cannel concrete 0.012-0.017 
Lab. models mortar 0.011-0.013 
 perspex 0.009 

 

3.2.2 Muskingum method with Manning equation 
River flow velocity is crucial to simulate discharge hydrographs and the residence time of 
water in the hydrological system. 
 
In the Muskingum method, the weighting 
factor x is set to be constant; k is also 
constant and can be related to the reach 
length L and a constant celerity vc. However 
the flow velocities in many natural rivers are 
influenced by the physical channel factors 
and changing frequently. Here the Manning 
equation is introduced to describe this 
variable flow velocity. 
 
We assume that the river cross section is 
shaped as a rectangle (Fig. 3-4), so the 
hydraulic radius R can be calculated as a 
function of river depth y and width T, which 
is constant: 

                                                             
)(2

)()(
tyT

tyTtR
⋅+

⋅
=                                                              (3-7) 

Where T is the reach width, in m; y is water depth or river stage in the reach, in m; t is time in 
seconds. 
 
The storage in the reach is calculated as follow: 
                                                             )()( tyTLtS ⋅⋅=                                                                 (3-8)  
Then y(t) is adjusted to the left side of the equal mark: 

                                                                
LT
tSty
⋅

=
)()(                                                            (3-9) 

This expression is substituted in the Eq. (3-7), giving the hydraulic radius equation:  

I(t) 

Q(t) 

S(t) 

y(t)

T 

L 

Fig.3-4 Scheme of rectangular river cross section  
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)(2

)(R(t) 2 tSTL
tST
⋅+⋅

⋅
=                                                (3-10) 

With the variable hydraulic radius R(t), the average velocity v in the reach calculated by 
Manning equation as Eq. (3-4) is obtained as below: 

1/2
O

2/3 sR(t) 1 v(t) ⋅⋅=
n

                                               (3-11) 

Combining with the variable mean velocity in Eq. (3-11), the Muskingum coefficient k in Eq. 
(3-2) can be related to variable river channel’s coefficient R(t):   

                                                    
2

13
2

)(
 k(t)

ostR

nL

⋅

⋅
=                                                  (3-12) 

Knowing that the hydraulic radius R(t) depends on the reach storage S(t) in Eq. (3-10), k(t) is 
transformed to be related to S(t): 

                                               
3

2
2

2
1 )(

)(2 k(t) ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅+⋅
⋅

⋅
=

tST
tSTL

s

nL

o

                                  (3-13) 

From the Eq. (3-13), we can get the conclusion that k(t) varies with the storage in reach 
during each time step. In other words, k(t) is a function of S(t), so the Eq. (3-14) can be 
written as follows: 

                                                 

3
2

2

2
1

2 k(S) ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅+⋅
⋅

⋅
=

ST
STL

s
nL

o                                      (3-14) 
Substituting Eq. (3-14) into the Maskingum Eq. (3-3), we get the relationship between 
outflow Q and the variable storage S. So if we know the inflow I* between the timestep t0 and 
t1, and the initial storage S0 at t0, Q* can be calculated between t0 and t1 according to this 
equation: 

                                                 
)1)((

*)(
Q*

0

00

xSk
IxSkS

−
⋅⋅−

=                                               (3-15) 

Eqs. (3-14) and (3-15) indicate the connection of the coefficient k and outflow Q that both 
depend on the variable reach storage over time. As a result, the relations are represented as 
k=f(S) and Q=f(S), which is the core of this method. 
 
The combination of Eq. (3-14), (3-15) and the conservation equation (2-3) defines the 
Muskingum-and-Manning (simply called M-M) method, which can be used to simulate the 
dynamics of mean stage and storage in a reach, and the resulting time series of outflow Q: 

                                                      
dt

tdS )(  = I(t) – Q(t)                                                  

                                                    
)1)((

)(Q(S)
xSk

IxSkS
−

⋅⋅−
=  

                                                    

3
2

2

2
1

2 k(S) ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅+⋅
⋅

⋅
=

ST
STL

s
nL

o  
This method is applicable to various river flow conditions. More importantly, it can easily be 
generalized to other river bed geometries by modifying the hydraulic radius equation as Eq. 
(3-7), (3-8), (3-9). 
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4. Numerical method 

When the two studied methods, Muskingum and M-M method, are applied into practice, one 
of the most important thing is how to integrate the storage in the reach from one time step to 
the next, because the flow routing mainly depends upon the dynamics of storage. This section 
deals with the choice of an efficient numerical method to perform the required integration 
over time. We considered two explicit finite difference methods, the Euler and fourth-order 
Runge-Kutta methods, and tested them in the case of the Muskingum scheme, but the results 
are completely transferable to the Muskingum-and-Manning equation, as the dependence of k 
on S is straightforward with an explicit scheme.  
 

4.1 Basic concept in numerical method 

4.1.1 Finite difference 
A finite difference is like a differential quotient in mathematics, except that it uses finite 
quantities instead of infinitesimal ones. In numerical analysis, especially in numerical 
ordinary differential equations and numerical partial differential equations, finite differences 
is used to approximate derivatives, which aim at the numerical solution of ordinary and partial 
differential equations respectively. [Maidment, 1993] 
 
In this study, we could get the storage variation within the timestep with the known inflow 
and the outflow as in Eq. (2-3). This equation indicates a simple function of storage as 
following: 

)(Sf
dt
dS

=                                                        (4-1) 

The function f(S) is defined as below in the Muskingum case: 

                                    ( )xk
tIxktStItQtISf

−⋅
⋅⋅−

−=−=
1

)()()()()()(                           (4-2) 

Integrating this derivative with a small embodied timestep Δt, the difference of storage dS in 
Eq. (4-1) can be expressed by S(t+Δt)-S(t): 

)()()( Sf
t

tSttS
=

Δ
−Δ+                                             (4-3) 

Eq. (4-3) is called a finite-difference equation of storage S. Solving this equation gives an 
approximate solution of the storage value defined by the differential equation.  
 
The error between the approximate solution and the true solution is determined by the error 
that is made by going from a differential operator to a difference operator. This error is called 
the discretization error or truncation error (the term truncation error reflects the fact that a 
difference operator can be viewed as a finite part of the infinite Taylor series of the 
differential operator).  
 

4.1.2 Explicit method 
In applied mathematics, explicit method is an approach used in computer simulations of 
physical process, or in other words, it is a numerical method for solving time-variable 
ordinary and partial differential equations. 
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Explicit methods calculate the state of a system at a later time from the state at the current 
time using a forward difference. In Eq. (4-3), if S(t) is the current system state and S(t+Δt) is 
the state at the later time, then we can get the explicit method for solving the one-dimensional 
storage equation: 

)),(()( ttSfttS Δ=Δ+                                          (4-4) 
So, knowing the storage value at time t, the corresponding storage value at time t+Δt can be 
obtained by using this relation.  
 

4.2 Two explicit schemes 

4.2.1 Euler method 
The Euler method advances a solution from time t to next time t+Δt, which is the most simple 
combination of Eq. (4-3) and Eq.(4-4). Hence the formula for calculating the storage is: 
 
                                          )())(()(t)S(t 2tOtSfttS Δ+⋅Δ+=Δ+                             (4-5) 
This formula means that the solution is advanced through an interval Δt. It uses the obtained 
information derived from Eq. (4-3) only at the beginning of that interval. The step’s error 
O(Δt2) is only two powers of Δt. 
 

4.2.2 Fourth-order Runge-Kutta method 
Consider the use of a step like Eq. (4-4) to take a “trial” step to the midpoint of the interval. 
Then use two values at that midpoint to compute the “real” step across the whole interval. By 
using the initial derivative at each step to find a point halfway across the interval, then using 
the midpoint derivative across the full width of the interval, the accuracy can be improved. 
That is the basic idea of the Runge-Kutta method, which is a bit more sophisticated and 
supposedly much more efficient than the Euler method, i.e. providing a much better precision 
with only a few additional operations. The classical fourth-order Runge-Kutta method 
(abbreviated RK4 in the following) is brought out based on this idea using four intermediate 
estimations. To integrate Eq. (4-3), which describes the storage variations, in case of the 
Muskingum or Muskingum-Manning schemes depending on the form of function, the RK4 
method can be expanded as follows: 
 
                                                 ))((k 1 tSft ⋅Δ=  

                                                 )
2

)((k 1
2

ktSft +⋅Δ=  

                                                 )
2

)((k 2
3

k
tSft +⋅Δ=                                                         

                                                 ))((k 34 ktSft +⋅Δ=  

                                                )(
6336

)(t)S(t 54321 tO
kkkk

tS Δ+++++=Δ+  

 
The RK4 method is mathematically proper, since any point along the trajectory of an ordinary 
differential equation can serve as an initial point. In this method, in each step the derivative is 
evaluated four times: once at the initial point, twice at trail midpoint, and once at a trail 
endpoint. From these derivatives the final function value is calculated and the step’s error 
O(Δt5) is five powers of Δt. The fact that all steps are treated identically also makes it easy to 
incorporate it into relatively simple “driver” schemes. [Press et al. 1992] 
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For each integration timestep, RK4 method uses four operations where Euler method only 
uses one, but the error is three orders of magnitude smaller. 
 

4.3 Comparison of performances with respect to precision 

We compared the above two numerical methods, the Euler and RK4 methods, to compute the 
storage through one day in a simple reach with Muskingum method.  
 
For the purpose of obtaining the daily outflow and compare results to conclude which method 
is more precise during one day, we compared different time step to subdivide one whole day. 
Q at end of one integration timestep can be derived from the calculated storage value, which 
is updated and serves as initial condition for the following timestep. Here are the different 
values that were compared in this study: Δt = 24 h, Δt = 12 h, Δt = 6h, Δt = 1 h, Δt = 20 min 
and Δt = 1 min.  
 
To better examine the computational results, these two methods are applied with the different 
time steps in multiple situations. These situations, involving diverse values of initial storage 
S(0), inflow I assumed constant all day long, and different values of the Muskingum 
parameters k and x, is shown in Tab. 4-1. In this table, the selected values of k induce mean 
velocities ranging from almost 0 up to 5.8 m/s with reach length of 1 km and to 579 m/s for a 
reach of 100 km, widely encompassing typical riverflow velocities which are between 0.1 and 
1m/s in most cases. 
 

Table 4-1. Multiple situations for application 
ve (m/s) Case k (days) S(0) (m3) I (m3/s) x L=1km L=10km L=100km 

0 I 0,002 10 10/86400 0,5 5,7870 57,8704 578,7037 

0 II 0,02 10 10/86400 0,5 0,5787 5,7870 57,8704 

0 III 0,2 10 10/86400 0,5 0,0579 0,5787 5,7870 

0 IV 0,7 10 10/86400 0,5 0,0165 0,1653 1,6534 

0 V 2 10 10/86400 0,5 0,0058 0,0579 0,5787 

VI 2 500 10/86400 0 0,0058 0,0579 0,5787 

VII 2 1000 10/86400 0 0,0058 0,0579 0,5787 

VIII 2 10 6/86400 0 0,0058 0,0579 0,5787 

IX 2 10 50/86400 0 0,0058 0,0579 0,5787 

0 X 8 10 10/86400 0,5 0,0014 0,0145 0,1447 

0 XI 20 10 10/86400 0,5 0,0006 0,0058 0,0579 

 
Fig. 4-1 describes the relationship between reach length L, k and the mean flow velocity ve in 
Eq. 3-2 transforming certain velocity to the value of k. 
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Figure 4-1. The normal relationship between reach length, k and velocity 

 
Given the constant inflow I and Muskingum parameters k, the initial storage S is advanced by 
the Euler and RK4 numerical methods, and then the final storage is obtained and compared in 
appendix 1. The result is the most precise when Δt = 1 min. Given this reference, Fig. 4-2 
shows that the smaller the timestep, the more precise the result of final storage. And the 
calculations of RK4 method presented by blue polylines are always more accurate than that of 
Euler method which is presented by pink polylines. These conclusions hold in all tested 
situations (Table 4-1), as shown in appendix 1. The relative errors in final storages are also 
analyzed respectively in appendix 2 with different parameters. 

V :  k=2 days 

13,8

15,8

17,8

19,8

1 day 12 hours 6 hours 1 hour 20 minutes 1 minute
time step

vo
lu

m
e 

st
oc

ke
s(

m
3 )

Euler(x=0) RK4(x=0)

Euler(x=0,5) RK4(x=0,5)

   

II :  k=0,02 days

0

2

4

6

8

10

1 day 12 hours 6 hours 1 hour 20 minutes 1 minute
time step

vo
lu

m
e 

st
oc

ke
s(

m
3 )

Euler(x=0) RK4(x=0)

Euler(x=0,5) RK4(x=0,5)

 
Figure 4-2. Calculation results of Euler and RK4 numerical methods in different situation 

 
Not surprisingly, this analysis shows the smaller is the timestep, the higher the precision. It 
also shows that the optimum timestep (largest precise timesteps) is different with the two 
methods. With the Euler method, we need Δt = 20 min in to achieve a precise result. With the 
RK4 method, a similar precision is reached up to Δt = 6h. 
 

4.4 Conclusion for numerical method and timestep 

By comparing the computational results of Euler method and RK4 method, we can get the 
following conclusions: 
 
♦ The RK4 method with the time step Δt = 6h obtains a precise result in all the tested 

situations, widely encompassing the typical river flow velocities. 
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♦ To obtain a similar precision, the Euler method must be used with a much smaller 

timestep, Δt = 20 min. 
 
♦ The required number of operations to achieve the same precision over 1 day is 4×4=16 

for RK4 and 3×24=72 for Euler. 
 
So in this study, we chose to integrate both routing methods, the Muskingum and M-M 
methods, using the RK4 method with a time step of Δt = 6h. 
 

4.5 Negative initial outflow in Muskingum method 

Perumal [1992] mentioned that the Muskingum method has the problem of negative or 
reduced initial outflow and he inferred that this may be explained by a consideration of a 
linear variation of discharge along the reach and by a linear extrapolation of the weighted 
discharge Qw(t) shown in Fig. 4-3: 
 

 
Figure 4-3. Schema of the weighted discharge Qw(t) [Perumal,1992] 

 
Where the weighted discharge ( ) )(1)( tQxtIx ⋅−+⋅  be denoted by Qw(t). 
 
The relation equation between outflow Q(t), inflow I(t) and the weighted discharge Qw(t) is as 
below: 

                                                 
)1(
)(

)(
1

)(
x
tQ

tI
x

xtQ w

−
+⋅

−
−=                                       (4-6) 

Where the Muskingum parameter x is regarded as the distance proportion
d

ddx
Δ
−Δ

=
2 . 

Hence it may be inferred from Eq. (4-6), that when )()( tQtIx w≤⋅ , then 0)( ≥tQ ; the 
outflow 0)( <tQ  only when )()( tQtIx w>⋅ . 
 
In this study, the problem of negative initial outflow has been concerned. To prevent from this 
simulation, the inflow I(t) or the x takes the value which is high enough to cause 

)()( tQtIx w>⋅ , then we take the shorter timestep to get the precise result of inflow which is 
smaller than the results by the longer timestep. That is to say, the smaller value of inflow I 
gotten by shorter timestep can avoid the problem of negative outflow. So the Muskingum 
method can work better with shorter timestep. We also give an upper limit in calculating the 
outflow to insure it not to be negative, which is describe in Sec. 5.1.1 (P. 19). 
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5. Application of two routing methods 

The main objective of the two tested models is to estimate the flow routing transformation 
and water volume stored in the different reaches composing the river network.  
 
The Muskingum and M-M methods have been first applied in a simple reach. The simulation 
results were shown to be correct and efficient. So the study develops from one simple reach to 
a complicated river network.  
 

5.1 Sensitivity in different situations in a reach 

Before applying the method to a natural river network, many situations were considered to 
ascertain the validity and robustness of the tested routing schemes. If some routing factors 
change, it may influence all the simulations as well as the results. 
 
Three representative situations are given in Tab. (5-1) to apply the routing models, which are 
named as “rising to a steady mode”, “pulse” and “pure recession”.  
 
♦ “Rising to a steady mode” means that the initial storage in the reach is almost empty, the 

inflow is constant, the outflow increases up until it equals the inflow in a steady state with 
constant storage.  

 
♦ In the “Pulse” situation, we consider a pulse inflow, during the first timestep of the 

simulation, then inflow is zero and we look at the transfer of this unit inflow through the 
reach. 

 
♦ “Pure recession” is another characteristic situation. The initial storage in reach is not zero 

and we study the recession dynamic of this store in absence of inflow, until it ends up 
being totally empty. 

 
Table 5-1. Different situations for routing simulation 

Case Name I (m3/s) Initial S (m3) 

I Rising to a steady mode x 0 

II Pulse I(t=1) = x 
  and  I(t>1) =  0  0 or y  

III Pure recession 0 y  
x is a constant value of inflow discharge, x>0; y is a value of initial storage in reach, y>0 too. 
 
The results are shown in appendix 3 for the two tested routing schemes: the Muskingum 
method and M-M method, both with the RK4 method and Δt =6h. The difference between 
them is whether the Muskingum coefficient k is constant or not. 
 

5.1.1 Muskingum method 
 
In Muskingum method, k determines the speed of river flow. The larger k, the smaller the 
flow velocity, and the slower the outflow rise to the steady mode. The other coefficient x 
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describes the attenuation of the wave. We can see that in “rising to a steady mode” with 
Δt=6h in Fig. 5-1(left), the steady discharge smaller than expected for the smallest k or fastest 
flow (k=0.11day), and that for the second smallest k (k=0.57day), there is oscillations of 
outflow discharge around the steady state.  
 

     
Figure 5-1. Sensitivities with different k for Δt = 6h (left) and for Δt = 0.5h (right) 

 
In the conservation equation (2-3), the variation of storage par time step is equal to the 
difference between inflow and outflow: 

                                                      
t

tSttS
Δ

−Δ+ )()(  = I(t) – Q(t)                                (5-1)  

In our code, to insure that S(t+Δt) ≥ 0, Q(t) has been bounded with respect to the following 
upper limit: 

                                                               
t
tStItQ

Δ
+≤

)()()(                                         (5-2) 

This was completed in our program as follows: 
 

                                          ⎥
⎦

⎤
⎢
⎣
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Δ
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=
t
tStI

xk
tIxktStQ )()(,

)1(
)()(min)(                       (5-3) 

 
Therefore, when the calculated Q(t) is higher than the upper limit, Eq. (5-3) reduces Q(t) to a 
lower value. This leads to the lower steady discharge shown by yellow curve in Fig. 5-1(left). 
The oscillations of black curve are also caused by this limit of outflow, which reduces the 
outflow sporadically when Q(t) gets higher than the limit. 
 
The above upper limit depend on Δt, and we tested if we could correct our simulation from 
the above problems with a shorter timestep than Δt = 6h. Fig. 5-1(right) shows the results of 
the simulation using Δt = 0.5h, which represents the good simulation without any oscillations. 
Hence, shorter timesteps lead to more precise results as expected. 

5.1.2 Muskingum-and-Manning method 
In the M-M method, k is no longer constant and it depends on the morphology of the reach 
(i.e.T, L, n, so), and on storage or water stage, which was one goal of the method. The 
coefficient x still determines the form of the flow curve. If most simulations were consistent 
with theory, we highlighted some questionable behaviour.  
 
The initial peak of discharge in the situation “Rising to a steady mode” with x=0.5 (P.35) has 
a numerical origin, as the outflow discharge is limited to avoid negative storage. And some 
undulate phenomenon of discharge when simulating with different lengths in “Rising to a 
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steady mode” are also the results of this limit. This has been discussed in Sec. 5.1.1. These 
features would disappear if we take a smaller timestep. Fig. 5-2 give an example of the 
solution. 
 
In the results of k, the nearly vertical part corresponds to an infinite k when the storage is zero 
in reach. In such a case, outflow is zero. 
 
We also found that the variations of slope or length of reach can produce different value of the 
steady state of discharge, as shown for example in Fig. 5-2 (left). By studying the relationship 
between storage, k, and physical channel characteristics (length L, width T, roughness of 
Manning n and riverbed slope so) described in Fig. 5-3, 5-4, 5-5, 5-6, which shows that to 
certain value of reaches’ characteristics, there is one single value of storage. So the feature of 
different value of steady state in Fig. 5-2 (left) is the numerical problem caused by the upper 
limit in Eq. 5-3. If we take the shorter timestep (Δt = 1h), this problem is well solved, in Fig. 
5-2 (right). 
 

 
Figure 5-2. Sensitivities of discharges with different slope using Δt = 6h (left) and Δt = 1h (right)  
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Figure 5-3. The relationship between storage, k 
and reach length (m)   

Figure 5-4. The relationship between storage, k 
and reach width (m) 
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Figure 5-5. The relationship between storage, k 
and Manning’s n (-) 

Figure 5-6. The relationship between storage, k 
and reach slope(-) 

 
Generally to say, when Manning’ roughness n increases, the flow discharge is slower; when 
the slope increases, the flow is faster; when the reach length increases, the flow is slower; 
when river width increases, the flow is slower. This can turn out to be the opposite when the 
conditions impose the upper bound for mass conservation, but this inaccuracy can be solved 
buy using a smaller timestep. 

5.1.3 Conclusion for simulation in a reach 
From the application with the Muskingum method and M-M method and their sensitivities of 
diverse parameters, it is concluded that these two methods could both commendably simulate 
the flow routing in a simple reach. The latter can integrate the linear reservoir model and 
variable parameter together to better simulate the dynamic natural flow. In the various 
sensitivity tests, we mostly got the results that were expected, and we could propose simple 
solutions to overcome the diagnosed problems, which show that the code is correctly designed. 
 

5.2 Sensitivity in a theoretical river network 

5.2.1 Construction of the river network 
A hypothetic river network was built with four levels of reach, the level increasing at each 
confluence (as in the Strahler ordering scheme), from 0 in the upstream reached to 3 in the 
downstream reach. At level 0, we do not consider any storage in the river reaches, i.e. the 
runoff accumulated over the timestep is totally discharged at the outlet of the basin at the end 
of the timestep and contributes to the inflow of the reaches of level 1. The reaches of level 1, 
level 2 and level 3 have two contributing reaches. They can store water in the reach during the 
routing, and the outflow from a reach of level n contributes to the inflow of the downstream 
reach of level n+1, which allows for the routing along the network. Here is the scheme of the 
river network (Fig. 5-7). 
 
In the following results, all the reaches have the same morphology (L, T, n, so, rectangular 
shape) and Muskingum parameters (k and x). 
 
We defined four forcing situations (Tab.5-2). The first three ones are a generalization of the 
ones tested in a simple reach to all the reaches of the network, so that all the reached have the 
same runoff forcing for a given timestep. The fourth situation, named “Pulse upstream”, is 
designed to assess a non uniform forcing. It consists of the “pulse” forcing in all the upstream 
reaches of level 0, with no runoff downstream, from level 1 to level 3. This situation allows us 
to study the routing of a flood wave generated in a fraction of the watershed, here the most 
upstream fraction. 
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Figure 5-7. The scheme of the theoretical river network 

 
Table 5-2.  Different situations for routing simulation in river network 

Case Name I (m3/s) Initial S (m3) 

I Rising to a steady mode x 0 

II Pure recession  x y  

III Pulse I(t=1) = x 
  and  I(t>1) =  0 0 or y 

IV Pulse upstream I(t=1)  = x (level=0) 
and I(t>1)  = 0 (other levels) 0 or y 

Here x and y are same as those in table 5-1. 
 
As in a unique reach (Sec. 5.1), we studied the sensitivity of the two routing models to their 
different parameters (k and x for Muskingum method, and x, T, L, n and so for M-M method). 
The results of these simulations are presented in appendix 4 and are discussed below.  
 
Note that in the situation “Pure recession”, we start from a state where all the reaches are at a 
steady with respect to their runoff input. But at levels 1 to 3, the inflow from the upstream 
reaches induces an increase in discharge and storage. So the river network itself is not in a 
steady state. 

5.2.2 Muskingum scheme 
In Muskingum method, there are always two parameters to be analyzed: k and x. As in the 
simple reach, the k and x determine the rising speed and the shape of the curve of flow series. 
 
With the Muskingum method and the situation of “Pulse” and “Pulse upstream”, the results 
obtained with the minimum value of k (k=0.23day) are exceptional to the others (for example, 
the situation of “Pulse” in Fig. 5-8 (left)). The integrated discharge over the simulation is 
smaller than in the other cases. That is to say when the river flow gets slower it will lead to an 
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incorrect computation result. Again, the reason is the upper limit imposed on discharge (Eq. 
5-3).  

To prevent the use of the second term
t
tStI

Δ
+

)()(  as an upper limit in Eq. (5-3), we need that: 
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)()(                                    (5-4) 

 
So it is necessary that the method’s application with the situation of “Pulse” and “Pulse 
upstream” should conform to the following condition: 
 
                                                              )1( xkt −⋅<Δ                                                (5-5) 
 
In other words, the maximum time step Δt in each river reach varies with k and x. So this 
method can be generally applied to the broad and long rivers, with rather slow flow (high k). 
If we come across the same problem in practice, we should take a smaller time step to satisfy 
the above condition (In our case “Pulse”, the timestep should be smaller than 2.778 hours, so 
we calculate the outflow with Δt = 2h), and we could easily use it as a preliminary check 
before running a simulation. Fig. 5-8 (right) shows the good simulation using the shorter 
timestep. 
 

         
Figure 5-8. Sensitivities with “Pulse” using Δt = 6h (left) and Δt = 2h (right) with different k 

 

5.2.3 Muskingum-and-Manning scheme 
The simulations of this method in the hypothetic river network are consistent with what was 
simulated in a unique reach, thus the unusual peak in discharge when river width T = 10 m is 
not as expected to be smaller than T = 5 m. This is well illustrated in the “Pulse upstream” 
situation (Fig. 5-9). We know that a larger storage induces a larger discharge and a larger 
width induces a slower velocity. After adapting the smaller timestep(Δt=4h), the peaks are 
smoothed for T=5 to 20m, and the maximum discharge is smaller for T=10m than for T=5m, 
as expected. So this is again a numerical problem. The sensitivities of other parameters are 
similar to the results which have been summed up in the application of this method in a 
simple reach.  
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Figure 5-9. Sensitivities with “Pulse upstream” with different T for Δt = 6h (left) and for Δt = 4h 

(right) 
 

5.2.4 Conclusion for simulation in a river network 
In this section, the Muskingum and Muskingum-and-Manning methods are applied in a 
hypothetical, regular river network. The variable value of k plays a great part in the whole 
simulations, which is influenced by many parameters: reach length, width, slope, Manning’s 
roughness and the storage. If one of these parameters changes, it will cause the k variable. 
Just like a chain which can transmit the information, it links the flow routing and river’s 
factor to be related together.  
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6. Application in the Seine River basin 

6.1 Seine River basin 

By French standards, the Seine river basin is highly populated: the watershed covers only 
12% of the French territory but hosts 25% of its population. But the population is not 
uniformly distributed within the basin: 10 of the 17 millions inhabitants are living on less than 
4% of the watershed (Paris urban area). As a result, population density along the river can 
vary from 3 to 5000 people per km2. Human pressure in river corridors is among the highest 
in Europe, not only in Paris, but also near some midsize cities (Reims, Beauvais…).[Kieken, 
2000] Otherwise the Seine river has the most sinuous course of all French rivers, especially 
between Paris and the Channel. Its main tributaries are the Aube, the Yonne, the Loing, the 
Essonne, the Eure, the Marne, the Aisne, and the Oise which has its source in Belgium (Fig. 
6-1). Consequently, it would be very useful to be able to simulate flooding.  
 

 
Figure 6-1 Hydrographical network of the basin of Seine [Billen et al, 2001] 

 

6.2 The land surface model (CLSM) 

The catchment-based land surface model [CLSM; Koster et al., 2000 and Ducharne et al., 
2000] provides a physically based description of the influence of climate on runoff. As a land 
surface model (LSM), it is designed to simulate the diurnal cycle of land surface water and 
energy fluxes as a function of near-surface meteorology (precipitation, short-wave and long-
wave incident radiation, surface pressure, air temperature and humidity at 2 m, wind speed at 
10 m) and can either be coupled to a GCM or used off-line as in the present study. The CLSM 
belongs to a new generation of LSMs which rely on the concepts of the hydrological model 
TOPMODEL to account for lateral water fluxes along topography, their influence on the 
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small scale variability of soil moisture, runoff and evapotranspiration, thus on larger scale 
water budget. [Ducharne et al, 2007] 
 
For this study, the CLSM model is used to get the runoff in mm/h throughout the network. 
The Seine watershed upstream Poses was subdivided into 27 unit catchments, with an average 
size of 2600 km2. Catchment delineation and topographic index computation were based on a 
100-m resolution DEM. In each unit-catchment, the vegetation and most soil properties (depth, 
porosity, wilting point, matric potential at saturation, Clapp and Hornberger's parameter b) 
were derived from the 1-km ECOCLIMAP database [Masson et al., 2003]. The two 
parameters describing the vertical profile of saturated hydraulic conductivity, namely the 
saturated conductivity at the surface and its vertical decay factor, were calibrated. 
 
A reference simulation was performed over six years (August 1985–July 1991) using this set-
up and observed meteorological forcing at a 1-hour and 8-km resolution. The CLSM does not 
account for the routing of runoff into streamflow and discharge is approximated by the spatial 
mean of runoff over 10 days (close to the concentration time of watershed). Corrected for the 
influence of three large regulation reservoirs in the upstream part of the watershed, it 
compared satisfactorily with observed streamflow in 20 gauging stations at the 10-day 
timestep. The Nash efficiency ranges from -0.1 at Courlon-sur-Yonne to 0.86 at Vitry-en-
Perthois (Saulx), and reaches 0.81 at Paris and 0.67 at Poses. The interannual variability of 
floods is realistically simulated, but low flows are not sustained enough, especially in the 
central and western areas where significant aquifers are connected to the river.  
 

  
Figure 6-2. Comparison between observed and simulated discharge at the outlet of the Seine 

 

6.3 Characteristics of the basin from GIS 

To simulate of flow routing, the physical characteristics of the stream reaches in each unit-
basin are required to compute the variable parameter k. There are 29 sub-basins in the Seine 
basin according to the CLSM. We distinguish 15 head basins where the transformation of 
runoff into river is instantaneous, and 14 basins, where we want to simulate the routing of 
river flow in the main reach. 
 
Here with the help of Geographic Information System (GIS), it has been very convenient to 
get the Seine basin’s characteristics. The main distribution of all the sub-basin is obviously 
shown in Fig. 6-3. The black boundaries divide the Seine into 29 sub-basins. The 15 sub-
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basins upstream are distinguished by using the red interlaced lines, which present all the 
rivers in these sub-basins, from the colorized-lines regions. In these upstream sub-basins, we 
will not account for routing in a first step, thus only the runoffs and areas of sub-basins are. 
As for the other sub-basins, besides the runoffs and the areas, it is also necessary to 
characterize the physical characteristics of the mainstream of each sub-basin, the average 
width T and average slope so and the length L from the inlet to the outlet of mainstream, 
which can be obtained by GIS. As an example, Fig. 6-4 shows in blue the mainstream of the 
Oise in the the lower sub-basin Oise_2, where the simulated flow from the upstream sub-
basins, Oise_a and Aisne will be routed.  
 

 
Figure 6-3 Hydrographical network of the basin of Seine 

 

 
Fig. 6-4 Flow routing from the upstream sub-basin (Oise_a and Aisne) to lower sub-basin 

(Oise_2) 
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6.4 Flow routing simulation 

In the process of the flow simulation in Seine, the model CLSM will give runoff to be routed 
as discharge using the M-M scheme and the RK4 method with timestep is 6h. The Manning 
coefficient of roughness, n, is fixed to be the global value: n = 0.035 s/m1/3, and the weighting 
factor of Muskingum method, x, is set to be the minimum value, x=0, for a first trial. 
 
Within 15 headwater basins (signed with red river lines in Fig. 6-3), the 6h outflow will in 
first approximation be deduced from the simple accumulation of runoff over the basin during 
the timestep. River flow routing will be performed in the 14 remaining basins, using the 
above outflow as inflow. The 6h accumulation of runoff from each of the 14 basins will be 
added at each timestep as lateral inflow in the corresponding river store without any 
transformation. The parameters of the M-M scheme will be deduced from the morphology of 
the main reach. 
 
We have been lacking for the runoff results derived from the CLSM simulation until this 
thesis is completed. Hence the simulation result in Seine River basin is not reached and this 
work is left to be continued in the future.  
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7. Conclusion 

The classical routing Muskingum method was combined with the Manning equation to 
simulate the natural flow routing in a basin in this study. 
 
By applying this Muskingum-and-Manning method in a simple reach and in a hypothetic 
regular river network, the results rightly reflect the influence of different parameter of 
hydrological conditions and of the shape as well as the roughness degree of the river bed. This 
method shall be tested in the Seine river network, in combination with the runoff simulated by 
the Catchment-based LSM. 
 
From our study, the conditions to guarantee a good simulation of Muskingum-and-Manning 
method are summed up as following: 
 
(1) The numerical integration method, RK4 method is preferable than the Euler method. 
 
(2) The timestep Δt = 6h is not sufficient in some of the tested cases, when flow is fast (i.e. 
small T, small k, small L) especially with high x. 
 
(3) The timestep Δt < 6h is more feasible.  
 
(4) When the inflow is zero, I(t)=0, the limit of timestep is )1( xkt −⋅<Δ . 
 
(5) Once the numerical problems are settled, the Muskingum-and-Manning method can 
describe correctly the water depth and its influence on discharge. 
 
Developing a good applied method for river flow routing simulation is still one important 
research subject. The prospects are numerous from LSM validation, to the hydrology forecast 
or the design of hydrological works. So the method proposed in this study has some practical 
sense and it remain to be tested in the non-theoretical case. It will be further validated and 
developed in the future. 
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Appendixes  

Appendix 1. Comparison of the simulated storage accordi-
ng to the numerical method and integration timestep 
The figures show the comparisons of the Euler and RK4 results. The storages are simulated 
after one day, in the different forcing situation described in Tab. 4-1, for different timesteps 
shown in abscissa. 
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Appendix 2. Comparison of relative error of simulated stor-
age according to the numerical method and integration 
timestep 
                Euler with different k (x=0)                            RK4 with different k (x=0) 
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Appendix 3. Figures of sensitivity in a simple reach 
3.1 Figures of sensitivity with Muskingum method in a simple reach: The figures in left 
vertical column are the calculation result with different value of k and x. And those in right 
column are the results with more values of k when x is fixed to be 0.25.  
 

 
 
3.2 Figures of sensitivity with Muskingum-and-Manning method in a simple reach: Here are 
three columns of figures. On the left side, the discharge results with different values of 
parameters (x, n, s0, L, T) are presented. In middle there are water depth results, and figures 
on right side are k computed results with more values of k when x is fixed to be 0.25. Three 
proposed situations are arranged separately in rows. 
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Appendix 4. Figures of sensitivity in river network 
4.1 Figures of sensitivity with Muskingum method in river network downstream: The figures 
in left vertical column are the calculation result with different value of k when x is fixed to be 
0. And those in right column are the results with the same values of k when x is 0.5.  
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4.2 Figures of sensitivity with Muskingum-and-Manning method in river network 
downstream: In rows are the simulations in each situation. In columns, from left to right are 
three results respectively, discharge, water depth and k. 
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