Feedback of terrestrial hydrology on climate change

Agnès DUCHARNE, senior scientist

With Pedro Arboleda, Amen Al-Yaari, Anne Jost, Frédérique Cheruy

@ Institut Pierre Simon Laplace (IPSL), Paris, France

Climate change intensifies the global water cycle

- We expect increased global precipitation
- But decreased annual precipitation in many land areas
- And increased frequency /duration / intensity of droughts (and floods)
- Large uncertainties in projections of the water cycle

Climate change is ongoing

Extreme drought caused water levels in China's largest freshwater lake, Poyang Lake, to drop by almost 10 metres between June and August. Credit: Shen Junfeng/VCG via Getty

Climate modelling overview

Earth system model = 3D numeric model of planetary climate

Ocean – Atmosphere – Land Interactions with Biosphere, Cryosphere, Biogeochemical Cycles Horizontal resolution $\approx 1^{\circ} \approx 100 \text{ km}$

Climate modelling overview

Earth system model = 3D numeric model of planetary climate

Ocean – Atmosphere – Land Interactions with Biosphere, Cryosphere, Biogeochemical Cycles Horizontal resolution $\approx 1^{\circ} \approx 100 \text{ km}$

WATER CYCLE UNCERTAINTIES

Atmosphere

Large uncertainties due to convection and clouds + atmospheric circulations

Soil moisture, evaporation, precipitation

Continents

Simplified description of soils, groundwater, and human activities

Outline

Introduction

Feedback of two features of land hydrology on climate change

- 1 Impact of soil moisture redistribution along landscapes
- 2 Impact of irrigation

Combined impacts along the Anthropocene: the BLUEGEM project

Franco-Taiwanese Scientific Grand Prize 2021

Photographs from Fan et al. 2019, WRR

We addressed this influence by introducing a lowland fraction in the IPSL climate model

Impact on simulated historical climate (1980-2010, boreal summer)

- Evaporation increases owing to increased soil moisture in lowlands
- Main impacts in areas with large lowland fractions with dry seasons
- Decrease of temperature in the same areas
- Limited effect on precipitation

b. P (mm/day) - JJA

Arboleda et al. (2022)

Impact on simulated climate change (until 2100, SSP5.8.5)

Impact on simulated climate change (until 2100, SSP5.8.5)

How to explain the patterns of climate change modulation?

Major role of P change with global warming

Conclusions

based on simulations with the IPSL climate model

In areas where P-**Future** Soil moisture redistribution SM↓ is attenuated ET ↓ is attenuated trends increases P ↓ is attenuated of the soil moisture and evaporation R ↓ is attenuated water cycle **Future trends** In areas where P+ of temperature ET ↑ is amplified SM ↑ is attenuated Tas and Tasmax ↑ are attenuated R 个 is attenuated P ↑ is attenuated

Arboleda Obando PF, Ducharne A, Cheruy F, Jost A, Ghattas J, Colin J (2022)

Influence of hillslope flow on hydroclimatic evolution under climate change

Earth Future, accepted.

Irrigation is used to increase crop yields, secure them against droughts, or for weed control (paddy rice)

Impact on simulated climate over the 20th century (CMIP6 models)

New description in the IPSL climate model

New description in the IPSL climate model

 V_i = volume within each reservoir

 R_i = reserved flow for ecosystems

Evaluation of this irrigation scheme around 2000 (offline)

No climate model simulation with / without irrigation so far

Biosphere and Land Use Exchanges with Groundwater and soils in Earth system Models

Overarching goal

Explore the joint evolutions of climate, soils, groundwater, and irrigation, throughout the Anthropocene (1900-2100)

To better understand their coupling, and to foresee their potential changes, including possible social consequences.

Advanced numerical modelling

climate models, downscaling methods, hydrological models, agro-economic models

Objective 1.

Establish the fingerprint of irrigation and groundwater

global and regional climate, water resources, biosphere & land use, soil carbon pools

Objective 2.

Provide improved projections up to 2100

Objective 3.

Integrate expert knowledge and socio-economic data to

- explore pathways for sustainable management
- refine land use and irrigation scenarios used climate models.

Various participatory methods with local and regional actors

participatory GIS, participatory cultural mapping, and storylines

Two scales and three geographic domains

Improved climate change projections

- Two climate models with advanced representation of both groundwater and irrigation (CESM2 at NTU, IPSL-CM6 at IPSL)
- Water withdrawal failure if rivers or groundwater too low
- Among first climate projections with an evolution of irrigated areas

Which modulation of climate change trajectory?

Tradoffs between irrigation and other water uses?

Tipping points?

Crop functional type area distribution

×107

Hurtt et al. 2020. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6.

Thank you Merci 謝謝

